Test Scenarios for Automated Risk Assessment

Introduction
Demo: https://miau.my-x.hu/miau/319/itsec_index_for_home_workers.docx
The automated risk assessment system for remote workers in Operational Technology (OT) environments has been tested extensively to ensure reliability and accuracy. This system, developed in C# using Visual Studio Code, automates risk assessment by extracting and analysing cybersecurity data.
To confirm that the system works correctly, we have designed a set of structured test scenarios. These tests follow clear, repeatable steps, making sure that results are consistent and reliable. The aim is to verify the accuracy of data extraction, risk ranking, COCO engine results and correlation analysis in a straightforward and practical manner.

Test Scenarios with Clear Steps
The system processes? attributes, asks ranking direction, and submits ranking values with the constant norm-value for each object to the COCO engine (URL=…). Below are key test cases to validate its performance:
Initial Setup:
· A new user gives dotnet run command into the Console to run the program. (Figure#1 = …)
· The user can upload the data in the form of csv file. (Figure#2abcd… = …)
· The system processes?, asks ranking direction from user and generates risk rankings. (Figures?)
· The directions are analysed using correlation matrix analysis. (Excel-demo, please!)
· Submits rankings to the COCO and gives results. (Figures?)

Test Case #1: Data Import and Validation
Steps:
1. Upload a CSV file (Annex#1= …) containing objects and attributes (like failed login attempts, software update frequency, and network activity, etc.).
2. System provides correlation matrix of Attributes. (Excel-demo, please!)
3. Verify if the system correctly (detailed list of potential anomalies/rules?) reads the file and recognizes headers and object.
4. Ensure that unnecessary (detailed list of potential anomalies/rules?) data is ignored and skipped, and valid data is processed.
Expected Outcome:
· The system successfully loads and processes? the data.
· Irrelevant (detailed list of potential anomalies/rules?) columns are filtered out.
· No errors (detailed list of potential anomalies/rules?) occur during the import process.

Test Case #2: Data Cleaning and Processing
Steps:
1. Upload a CSV file containing constant norm (=1000) value in last row. Figure?
2. Software ensures that duplicate (detailed list of potential anomalies/rules?) or irrelevant (detailed list of potential anomalies/rules?) data is removed.
3. Validate, that columns with identical values (it is a clear rule!) are excluded.
4. Check if only numerical (integer!) attributes are retained for ranking.
Expected Outcome:
· Only necessary data is kept.
· The system confirms that preprocessing is complete.
We need a lot of csv-files with different anomalies (partially one single, but different anomalies, partially with 2-3-4-more parallel anomalies)… Annex = …

Test Case #3: Analysing file without headers and IDs
Steps:
1. Upload a CSV file containing no headers (Attributes names) and column IDs (Object IDs).
2. Verify if the system correctly reads the file and recognizes headers and Column IDs are not present.
3. Ensure that first row and column is not skipped.
Expected Outcome:
· The system successfully loads and processes the data.
· No errors occur during the import process.

Test Case #4: Analysing file without headers and IDs
Steps:
4. Upload a CSV file containing no headers (Attributes names) and column IDs (Object IDs).
5. Verify if the system correctly reads the file and recognizes headers and Column IDs are not present.
6. Ensure that first row and column is not skipped.
Expected Outcome:
· The system successfully loads and processes the data.
· No errors occur during the import process.

Test Case 5: Single Attribute, Single Object
Steps:
1. Upload a CSV file containing with 1 attribute and 1 object.
2. Ensure that attributes correlation is calculated to help the user to determine the direction.
3. Process the ranking using the provided direction.
4. Ensure that value of 1000 added in the last column after ranking.
5. Save the ranked data in a Notepad file.
Expected Outcome:
· The ranking file is successfully generated.
· The single object is ranked correctly.
· The last column contains 1000.
· The output is saved properly.

Test Case 6: Single Attribute, 432 Objects
Steps:
1. Upload a CSV file containing 1 attribute and 432 objects.
2. Ensure the last column contains a value of 1000 for all objects.
3. Save the ranked data in a Notepad file.
Expected Outcome:
· The ranking file is successfully generated.
· All 432 objects are ranked correctly.
· The last column contains 1000 for all objects.
· The data is saved properly.

Test Case 7: Two Attributes, 432 Objects
Steps:
1. Create a CSV file containing 2 attributes and 432 objects.
2. Ensure the last column contains a value of 1000 for all objects.
3. Save the ranked data in a Notepad file.
Expected Outcome:
· The ranking file is successfully generated.
· All 432 objects are ranked correctly based on 2 attributes.
· The last column contains 1000 for all objects.
· The data is saved properly.

Test Case 8: Six Attributes, Six Objects
Steps:
1. Create a CSV file containing with 6 attributes and 6 objects.
2. Ensure the last column contains a value of 1000 for all objects after ranking.
3. Save the ranked data in a Notepad file.
Expected Outcome:
· The ranking file is successfully generated.
· All 6 objects are ranked correctly based on 6 attributes.
· The last column contains 1000 for all objects.
· The data is saved properly.

Test Case #9: Correlation Analysis
Steps:
1. Run the correlation analysis module.
2. Confirm that relationships between attributes are calculated accurately.
3. Ensure that attributes with a correlation above 0.3 are highlighted.
4. Check if users are prompted to confirm or adjust classifications.
Expected Outcome:
· The correlation matrix correctly shows relationships between attributes.
· Highly correlated attributes are flagged for review.
· The user receives classification confirmation prompts.

Test Case 10: Risk Assessment Ranking Generation
Steps:
1. Generate the final risk assessment ranking file.
2. Ensure that the ranked data consistently contains a value of 1000 throughout the last column.
3. Save the ranked data in a Notepad (.txt) file.
Expected Outcome:
· The ranked data is successfully generated.
· The last column contains a value of 1000 throughout.
· The ranked data is saved in a Notepad file for validation check.

Test Case 11: Data Submission to Coco Engine
Steps:
1. Submit the ranked data to the Coco engine via a Coco CURL request.
2. Ensure the data is successfully sent.
3. Retrieve and analyse the response from the Coco engine.
4. Ensure the output matches the Coco engine output.
5. Save the response for future analysis.
Expected Outcome:
· The ranked data is successfully sent to the Coco engine.
· The Coco engine processes the data and returns an output.
· The response is retrieved, and output is saved in a Notepad file for validation check.

Conclusion
The system has been tested with well-defined and repeatable scenarios to ensure its accuracy in handling cybersecurity data, analysing correlations, ranking and Coco engine output. Any inconsistencies observed in testing will be used to improve system performance and reliability.
These structured test cases allow organizations to confidently implement the automated risk ranking system and Coco engine to find high risk value to ensuring a secure remote work environment with minimized cybersecurity threats.

