Case Study Addendum: Enhancing Moodle Platform Testing for Kodolányi János University
Author: Bayanmunkh Ganbat
Supervisor: Prof. László Pitlik (critical aspects, quality assurance)
Date: 2025.02.18
Email: pitlik.laszlo@kodolanyi.hu
Initial Documents:
· IT-Security Risk Index for Home WorkersIs this documentation more concrete than the initial (benchmark) documentation?
· https://miau.my-x.hu/miau/320/moodle_neptun_tests/Neptun_testing1.pdf<--these steps are concrete enough, these steps are reproducible
· https://miau.my-x.hu/miau/320/moodle_neptun_tests/Neptun_testing2.docx<--these steps are concrete enough, these steps are reproducible
· Case Study Addendum - Neptun_pl.docxempty bubbles need examples/annexes and never more empty bubbles: https://miau.my-x.hu/miau/320/moodle_neptun_tests/ (see: the_single_position_for_empty_bubbles_is_already_in_use_*.docx
· Index of /miau/320/moodle_cubes_logic
· Index of /miau/320/moodle_neptun_tests|


[bookmark: _gjdgxs]Introduction
This case study outlines a structured approach to creating a benchmark for deriving IT-security risk index valueswhat is the role of the Moodle System here and now?. It includes three primary layers:
1. Establishing index values through benchmarking.
2. Exploring automation aspects of the benchmarking process.
3. Developing and testing the automated components.
The goal is to refine a conceptual model for IT security risk assessment, ensuring its applicability and automation potential while validating its functionality through rigorous testing.

[bookmark: _30j0zll]Layer 1: Index-Values (Benchmarking) with Critical Aspects
[bookmark: _1fob9te]Concept for IT Security Risk Index Software
[bookmark: _3znysh7]Key Attributes for IT-Security Risk Assessment
A robust IT-security risk index should incorporate the following attributes:
1. Device Security - Availability of antivirus, firewall, and encryption.
2. Network Security - Router security, VPN usage, and encryption.
3. Software Updates - Frequency of updates and patches.
4. User Awareness - Knowledge of security best practices.
5. Access Control - Password strength and multi-factor authentication.
6. Data Backup - Backup frequency and reliability.
7. Physical Security - Secure storage and access control for devices.
8. Incident Response - Incident preparedness and response plans.
9. Remote Access Security - Security measures for remote connections.
10. Third-Party Risk - Security of external applications and services.
[bookmark: _2et92p0]Calculation Model
Each attribute receives a score (0-8), with weights assigned based on importance:
· Example Calculation: Where weights sum to 1.
· Critical Aspects:
· Measurement units for raw scores are undefined.
· Weight assignments are subjective.
· Attribute directions (higher vs. lower risk) lack clarity.
[bookmark: _tyjcwt]Recommendations for Improvement
· Standardize measurement units and define scoring criteria.
· Base weights on empirical data rather than subjective input.
· Clearly define how each attribute influences risk.

[bookmark: _3dy6vkm]Layer 2: Automations with Critical Aspects
[bookmark: _1t3h5sf]Automation Strategy
· Develop an HTML-based interface to collect attribute values.
· Implement JavaScript for automatic risk index calculation.
· Store results dynamically for trend analysis.
[bookmark: _4d34og8]Code Implementation
An HTML form enables score selection, and JavaScript calculates the risk index:
[bookmark: _2s8eyo1]Critical Aspects:
· The form lacks validation for incorrect or missing inputs.
· The JavaScript calculation is hardcoded with fixed weights.
· No data storage or reporting functionality is included.
[bookmark: _17dp8vu]Recommendations for Improvement
· Implement form validation to ensure valid inputs.
· Enable dynamic weight adjustments based on risk model refinements.
· Store results in a database for tracking security trends.

[bookmark: _3rdcrjn]Layer 3: Testing with Critical Aspects
[bookmark: _26in1rg]Testing Strategy
A comprehensive testing framework is essential to validate the automation components:
1. Form Validation Tests
· Ensure dropdowns accept valid values (0-8).
· Prevent form submission with missing inputs.
2. Calculation Accuracy Tests
· Compare outputs with manual calculations.
· Test edge cases (all 0s, all 8s).
3. UI/UX Testing
· Verify proper alignment and readability.
· Ensure risk index displays correctly.
4. Error Handling Tests
· Simulate missing form elements.
· Check for unexpected input errors.
5. Cross-Browser Compatibility Tests
· Validate performance across Chrome, Firefox, Safari, and Edge.
6. Performance Testing
· Measure response time for index calculation.
7. Security Tests
· Check for vulnerabilities in form inputs.
· Ensure safe handling of user data.
[bookmark: _lnxbz9]Recommendations for Improvement
· Integrate unit and system testing using automated test scripts.
· Implement dynamic reporting for test results.
· Address security concerns with input sanitization.

[bookmark: _35nkun2]
Conclusions
A well-structured final thesis on IT security risk indexing should:
1. Establish a clear, evidence-based benchmark.
2. Ensure automation aspects are logically sound and data-driven.
3. Rigorously test the model to verify accuracy, usability, and security.
By refining these aspects, the benchmark concept can serve as a strong foundation for further research and real-world application in IT security risk management.

