LLM-támogatású záróvizsga-felkészítő demo-helyzetekkel
(LLM-supported final exam preparation with demo situations)
Pitlik László, KJE
Bevezetés
A BPROF képzés esetében a szakdolgozatíráskor kötelező, a záróvizsgán lehetséges az LLM használat. Ezen COPILOT-esettanulmány a rendszertervezés gyakorlatok keretében jött létre, ill. oktatói kommentárokkal utólag került ellátásra annak demonstrálására: milyen kommunikációs helyzetekre illik számítani a záróvizsga keretében (ahol a tételek=tantárgyak – pl. rendszertervezés – tetszőleges aspektusainak közös értelmezése lesz a feladat elsődlegesen a mindenkori vizsgázóval párhuzamosan védésre kerülő szakdolgozatokban bemutatott fejlesztések konkrétumaira vonatkozóan).
A BPROF képzés elsődlegesen a gyakorlatiasságot, a pro-aktivitást, a szuverenitást támogatja és értékeli. Természetesen a klasszikus tanulás (magolás) eredményeként előálló polihisztor állapotok is értékesek, de per definitionem kizárt, hogy egy Hallgató mindenre kellő mennyiségben és minőségben tudjon azonnal fejből reagálni. Így preferálandó, hogy bármilyen (szakmai) kérdés is merüljön fela mindenkori vizsgabizottság részéről, arra a vizsgázó LLM támogatással azonnal reagálni tudjon: vagyis ilyenkor derül fény a prompt-olási képességekre és az LLM-output kockázatainak feltárását jelentő kompetenciákra. Ezek nélkül a XXI. században nem lehet már IT szakértőről beszélni…
Esettanulmány: Rendszertervezés
Prompt:
A feladatom egy egyetemi oktató helyettesítését menedzselni képes robot fejlesztése. Sorolj fel legalább tíz minél konkrétabban megfogalmazott robotfunkciót úgy, hogy az egyes lista elemek egymáshoz képest minél inkább kihagyás- és átfedés-mentesek legyenek.
COPILOT:
Íme egy 10+ pontos, konkrét és egymástól jól elkülönülő funkciólista egy olyan robothoz, amely képes egyetemi oktató helyettesítését menedzselni:
🎓 Oktatási és tanítási funkciók
1. Előadás megtartása hang- és vizuális prezentációval
· A robot képes előre betáplált vagy dinamikusan generált tananyagot kivetíteni, magyarázni, példákat hozni, és kérdésekre válaszolni.
2. Interaktív hallgatói kérdéskezelés
· Valós időben fogadja a hallgatói kérdéseket (szóbeli vagy digitális), és releváns, pontos válaszokat ad.
3. Gyakorlati feladatok demonstrálása
· Laborban vagy gyakorlati órán képes eszközöket kezelni, kísérleteket bemutatni, vagy szimulációkat futtatni.
📑 Adminisztratív funkciók
4. Jelenlét- és részvételnyilvántartás
· Automatikusan rögzíti, ki van jelen az órán, akár arcfelismeréssel vagy digitális bejelentkezéssel.
5. Tananyag kiosztása és frissítése
· Feltölti a legújabb jegyzeteket, feladatlapokat, és biztosítja, hogy minden hallgató hozzáférjen.
6. Vizsgák és dolgozatok lebonyolítása
· Tesztet generál, kiosztja, felügyeli a vizsgát, majd automatikusan kiértékeli az eredményeket.
🤝 Hallgatói támogatás
7. Konzultációs időpontok kezelése
· Online és offline módon időpontfoglalást biztosít, és konzultációt tart a hallgatóknak.
8. Személyre szabott tanulási ajánlások
· Elemzi a hallgató teljesítményét, és javaslatot tesz további tananyagokra, gyakorlófeladatokra.
⚙️ Technikai és szervezési funkciók
9. Órarend és helyszín menedzsment
· Ellenőrzi, hogy az óra megfelelő teremben, időben induljon, és jelzi az esetleges változásokat.
10. Eszközök és infrastruktúra ellenőrzése
· Felügyeli a projektor, számítógép, laborfelszerelés működését, és hibajelentést küld, ha probléma van.
11. Vészhelyzeti protokollok kezelése
· Tűzriadó, egészségügyi probléma vagy technikai hiba esetén képes gyorsan reagálni, riasztani és irányítani a hallgatókat.
👉 Összefoglalva: a robot funkciói lefedik az oktatási tartalom átadását, hallgatói interakciót, adminisztrációt, támogatást és technikai menedzsmentet, így valóban képes egy oktató helyettesítését komplexen ellátni.
Szeretnéd, hogy ezt a listát egy funkcionális architektúra-diagram formájában is összerendezzem, ahol látszik, mely modulok mely feladatokat fedik le?
A potenciális vizsgázói reakciót a következő prompt maga mutatja be:

Prompt:
Ez egy tökéletes félreértése az elvárásoknak, nem a tanárt kell robotizálni hanem a kieső tanár helyettesítését menedzselő/előkészítő/szervező/koordináló emberi adminisztrátort. Kérek egy új listát.
COPILOT:
Értem, tehát a robot feladata nem az oktató helyettesítése, hanem az oktató kiesése esetén a helyettesítés megszervezése és koordinálása – vagyis az adminisztrátor munkáját kell automatizálni. Íme egy 10+ pontos, konkrét és egymástól jól elkülönülő funkciólista:
📅 Óraszervezés és koordináció
1. Kieső óra automatikus azonosítása
· Az órarend és jelenléti adatok alapján felismeri (további prompt-ot igényel: operatívan hogyan? Pl. email = beteg vagyok, ill. email = az orvos -tól-ig kiírt betegnek), ha egy oktató nem tudja megtartani az órát.
2. Helyettesítési igény rögzítése
· Dokumentálja a kiesés okát, időpontját és a helyettesítés szükségességét (további prompt: mikor képzelhető el az ember általi helyettesítés szükségtelensége: pl. tantervben akkreditáltan engedélyezett gyakorló feladatok kiadásával egy előre definiált URL-en keresztül, mely mögött előre eltervezett gyakorlófeladatok vannak a potenciális emberkiesés eseteire előre felkészülve).
3. Megfelelő helyettes oktató keresése
· Az adatbázisban szereplő oktatók közül kiválasztja a szakterület, órarend és terhelhetőség alapján a legalkalmasabb helyettesítőt. (vö. https://miau.my-x.hu/miau/328/COPILOT_helyettesites_koordinalo_robot.docx)
📢 Kommunikáció és értesítés
4. Értesítések küldése az érintett oktatóknak
· Automatikusan értesíti a kijelölt helyettesítőt és az eredeti oktatót. (12. pont: a helyettes helyettesét!)
5. Hallgatók tájékoztatása
· Emailben, üzenetküldő rendszeren vagy digitális tanulmányi felületen közli a helyettesítés tényét és részleteit. (vö. további prompt-ok, mint a látszólag legkevésbé komplex funkció értelmezésének finomhangolása…)
6. Adminisztrációs egységek informálása
· Jelzi a tanszékvezetőnek vagy tanulmányi osztálynak a változást, hogy hivatalosan is rögzítsék.
🗂 Dokumentáció és nyilvántartás
7. Helyettesítési napló vezetése
· Minden helyettesítést rögzít, így később visszakereshető, ki mikor és kit helyettesített.
8. Órarend frissítése
· Az aktuális órarendet automatikusan módosítja, hogy a hallgatók és oktatók naprakész információt lássanak.
⚙️ Támogató funkciók
9. Konfliktuskezelés
· Ha több oktató is alkalmas, javaslatot tesz a legoptimálisabb megoldásra (pl. terhelés, szakmai illeszkedés).
10. Kapacitásfigyelés
· Nyomon követi, hogy egy oktató ne kapjon túl sok helyettesítést, és kiegyensúlyozott legyen a terhelés.
11. Vészhelyzeti protokoll aktiválása
· Ha nem talál helyettesítőt, alternatív megoldásokat javasol (pl. óra áthelyezése, online anyag biztosítása).
12. A vizsgázó legyen képes vagy a funkciólista teljeskörűségét bizonyítani/LLM-támogatással bizonyíttatni, vagy IQ-ból további funkciókat javasolni az átfedés-mentesség szem előtt tartása mellett… (vö. helyettesítő helyettese?)
👉 Ez a lista lefedi a teljes helyettesítési folyamatot: a kiesés felismerésétől kezdve a helyettes megtalálásán és értesítésén át az órarend frissítéséig és a dokumentációig.
Szeretnéd, hogy ezt a funkciólistát egy folyamatábra formájában is összerendezzem, ahol látszik a lépések sorrendje és kapcsolata?
Prompt:
Ezek közül melyik a legegyszerűbben megtervezhető funkció?
COPILOT:
A felsorolt funkciók közül a legegyszerűbben megtervezhető általában az, amelyik kevés adatot igényel, kevés döntési logikát tartalmaz, és jól körül határolható folyamat.
👉 Ebben az esetben a „Hallgatók tájékoztatása” funkció a legegyszerűbb:
· Csak egy trigger kell (pl. kieső óra rögzítése). (vö. OAM a 11 funkció legalább 5 egyszerűség-dimenziójáról szóló prompt és output…)
· Van egy előre definiált üzenetsablon („Az XY oktató óráját Z oktató helyettesíti ekkor és ekkor”).
· Az üzenetet a rendszer kiküldi a hallgatói listára (email, tanulmányi rendszer, üzenetküldő platform).
· Nem igényel komplex döntést, adatbázis-keresést vagy konfliktuskezelést.
Miért ez a legegyszerűbb?
· Input: egyetlen esemény (kiesés + helyettesítő adatai).
· Output: egyetlen kommunikációs művelet (értesítés).
· Technikai megvalósítás: sablonkezelés (többnyelvűségi komplexitás? minden érintett Hallgató NEPTUN-ban preferált nyelvének megfelelően) + címzettlista (X kar Y szak Z évfolyam, Q nyelv, stb. komplex érintetti listájának unique-value/egyedi()/select-distinct elvű kezelése, mint komplexitásnövelés) + küldési modul (visszapattanó email-ek adekvát kezelése, mint komplexitásnövelés).
· Kockázat: minimális, mert nincs szükség bonyolult szabályrendszerre vagy optimalizálásra.
Ha szeretnéd, készíthetek egy lépésről-lépésre folyamatleírást ehhez a funkcióhoz, mintha egy fejlesztési specifikáció első vázlata lenne. Ez segítene abban, hogy lássuk, mennyire egyszerűen implementálható. Szeretnéd, hogy kidolgozzam?
Prompt:
Kérek szépen egy tizenegy soros és legalább öt oszlopból álló táblázatot, ahol a sorok az előbb beazonosított funkciók, az oszlopok az egyszerűség attribútumai pl. trigger paraméterek száma nulla és n között, ahol n pozitív egész szám.
COPILOT:
Íme egy 11 soros, 5 oszlopos táblázat, amely az előzőleg felsorolt funkciókat mutatja be, és az egyszerűség szempontjait (attribútumokat) értékeli. Az értékek példák, amelyek jelzik, mennyire egyszerű az adott funkció megvalósítása.

Táblázat: Helyettesítésmenedzselő robot funkciók egyszerűségi attribútumai
	Funkció
	Trigger paraméterek száma NINCS NULLA érték a prompt által felkínált csapdahelyzet ellenére! Nulla trigger olyan függvényt jelentene, melynek nincs inputja = nincs mivel meghívni?!
	Döntési logika (MIT JELENT?) komplexitása (MIT JELENT?) = tipikus mellébeszélés, mert a prompt-ból tudatosan kihagyásra került, hogy NUMERIKUS cellaértékek kellenek!
	Külső adatforrás igény
	Automatizálhatóság foka
	Hibakockázat

	Kieső óra automatikus azonosítása
	2 (órarend, jelenlét)
	Közepes MIT JELENT?
	Magas (órarend, jelenléti rendszer)
	Közepes
	Közepes

	Helyettesítési igény rögzítése
	1 (oktató jelzés)
	Alacsony
	Alacsony
	Magas
	Alacsony

	Megfelelő helyettes oktató keresése
	3–4 (szakterület, órarend, terhelés, preferencia)
	Magas
	Magas
	Közepes
	Magas

	Értesítések küldése oktatóknak
	1 (helyettesítő kiválasztva)
	Alacsony
	Alacsony
	Nagyon magas
	Alacsony

	Hallgatók tájékoztatása
	1 (helyettesítő és a tanóra adatai a pontos definíció érdekében - szöveges inkonzisztencia-gyanúja az LLM saját szövegein belül)
	Alacsony
	Alacsony
	Nagyon magas
	Alacsony

	Adminisztrációs egységek informálása
	1 (helyettesítés rögzítve)
	Alacsony
	Közepes
	Magas
	Alacsony

	Helyettesítési napló vezetése
	1 (helyettesítés esemény)
	Alacsony
	Alacsony
	Nagyon magas
	Alacsony

	Órarend frissítése
	2 (eredeti óra, helyettesítő)
	Közepes
	Magas
	Közepes
	Közepes

	Konfliktuskezelés
	3–5 (több oktató, terhelés, preferencia, szakmai illeszkedés)
	Magas
	Magas
	Alacsony
	Magas

	Kapacitásfigyelés
	2–3 (helyettesítések száma, oktató terhelése)
	Közepes
	Közepes
	Közepes
	Közepes

	Vészhelyzeti protokoll aktiválása
	2 (nincs helyettes, óra időpontja)
	Közepes
	Közepes
	Közepes
	Közepes

👉 Látható, hogy a legegyszerűbb funkciók: NEM LÁTHATÓ, csak naiv = optimalizálatlan vélelem alkotható a lehet-e minden objektum másként egyforma antidiszkriminatív optimalizálás alkalmazása nélkül, ahol minden attribútum esetén meg kell adni előre: minél kisebb/nagyobb az értéke, annál egyszerűbb-e? Pl. minél kevesebb a trigger-igény, annál egyszerűbb!
· Hallgatók tájékoztatása
· Értesítések küldése oktatóknak
· Helyettesítési napló vezetése
Ezeknél kevés trigger paraméter kell, minimális döntési logika van, és szinte teljesen automatizálhatók.
Szeretnéd, hogy a táblázatot egy színezett vizuális mátrixként is elkészítsem (pl. zöld = egyszerű, piros = bonyolult), hogy azonnal látszódjon, mely funkciók könnyűek és melyek nehezebbek?
Konklúziók
A korrektúrával írt gondolatok azok a valóban a vizsgázó által fejből és azonnal felvetendő kommentárok, reakciók, melyek jelzik, hogy az LLM-mel való együttműködés minőségbiztosításának komplexitása magas szintű és az Ember (vizsgázó) által stabilan, logikusan birtokolt. Ellenpont: a vizsgázó helyben hagy per definitionem pl. inkonzisztens LLM-részleteket…
