Kodolanyi Janos Egyetem

SZAKDOLGOZAT

JUHASZ KRISZTIAN ISTVAN
UZEMMERNOK-INFORMATIKUS

ALAPKEPZESI SZAK

Budapest

2025.

Kodolanyi Janos Egyetem

Informatika Tanszék

Virtualis targyakra épiilo
kereskedelmi platform tervezése és fejlesztése
a Steam okoszisztéma altal kinalt

eszkozok és integracios lehetoségek kihasznalasaval
Design and Development of a Virtual Item Trading Platform.

Leveraging the Steam Ecosystem

Konzulens: Dr. Pitlik Laszlo

Készitette: Juhasz Krisztian Istvan

UZEMMERNOK-INFORMATIKUS

ALAPKEPZESI SZAK

Budapest

2025.

1

Tartalomjegyzéek

BEVEZELES ...ttt ettt 6
1.1 Kutatasi €s fej1eSztes1 CELOK.cuiiiiiiiiiiiieiie et 6
1.2 Problémafelvetés €s INAOKIAScoceiiiiiiiiiii e 7
1.3 IMIOTIVACIO .ttt ettt et et e h e et e bt e st e e bt e e st e e st e enbeesaeeenneeneee 7

1.3.1 SZEMELYES MOTIVACIO ...c.uvieiieiiieniieeiieeiieeteesieeeteetteebeesteeenbeesseeesseenseesnseenaeeenseennns 7

1.3.2 PIaC OLIVACIO ..euveentiiiieeiietteie sttt sttt ettt et sttt st 8
1.4 O] (10 10) 4 o) SRRSO 8
1.5 HaASZNOSSAZeeeeeieeeiee et ettt nanes 9

1.5.1 Felhasznaloi elonyok és idOhatékonySagcceevveeriieriieiieniieieeie e 10

1.5.2 Fejlesztési koltségek és megtériilési modell...........oooeeviiiiiiniiiiiiiniiiieiceee 11
1.6 A 57akdolgozat fRIEPIESE.....ccueiiiiiiieiie e 13

1.6.1 ARALANOS TRIEPILES ...t ees e 13

1.6.2 Szakdolgozat KOTlAtjalccueriiriiiiiiiiiiiiiceiete e 13

1.6.3 Formdazasi szabalyok €s JelOIESEK........ccoovviiiiiiiriiiiiieiiieiiecie e 14

Szakirodalmi AtEKINEESeeiuiiieiiiiieiee et 15
2.1 VIrtUALIS TATZYAKeiciiiiiieciieieece ettt ettt et esbeessaeeabeesnneens 15
2.2 Online piacterek fogalmac.oocuieiiieiiiiiiieeiiee et 17
2.3 A steam Platformoooeiiiiiiii e 18
2.4 A képzés tantargyainak és a szakdolgozati téménak a kapcsolata.............ccccueeneeen. 18

2,41 PIOZIAIMOZAS ..ccuvveeiiiieiiieeiiie e ettt ettt et e et e e et e ettt e e bt eesabteesabteesabeeesabeeenabeeas 18

2,42 AdAtDAZISOK ...coueiiiieeiieeiie ettt ettt et sneeens 18

2.4.3 Adatszerkezetek €s algoritmusOkKcovcvveeiiieeiiieeiiieeiee e 19

2.4.4 SzoftverarchiteKtUrakccoooiiiiiiiiiiiiieeeeeee e 19

2.4.5 Halozatok és szamitogeép architekturak...........ccoovcviveiiiieiiiiiiiieeee e, 19

2.4.6 Informatikai védelem €s DIZEONSAZ........ccevvveeriieeiiieeiiieeiee e 19

2.4.7 Felhasznal6i interfészek €s vizualiZaCiO.........coocueeviieiiieniieniiiiieeieecese e 19

2.4.8 SZOfVEITESZEEIES ..ot 19

2.4.9 RENASZETEIVEZES ...c..eeiieuiiiieieeiesiteteete ettt sttt ettt ettt sbe bt saee s 20

2.4.10 RendszermodelleZESccuevuiiiiiiiiiiiiiiiieiecieeeee e 20

2.4.11 Programozasi alapelvek €s mOdszertanok...........ccceeevvveeiieeerieeeiieeeie e 20

2.4.12 Matematikai alapokccooviieiiiiiiiiieeiie e 20

2.4.13 OperaciOs TENASZEIEKccueieeuiiiiiiiieeiie ettt e et e e e et e e e e e saee e eaeeeenree s 20

2.4.14 Vallalati gazdasagtan..........c.ccecuveeiiiieeeiiieeeiieeeiee et e esreeerreeeeaeeeaeeesaee e saeeenaree s 20

2.4.15 Vezetési €s vallalkozAast 1SMETETEKooeevieeeeeee e 20

2.4.16 SzZOftVerliZemMEILELESoiiuiiiiiiiieie et 21
2.4.17 Europai civilizaciO €S 1deNtItAS.eeevireriieeeiieeciieerie e e e evee e evee e 21
2.4.18 Komplex tarsadalomtudomanyi ismeretek...........ccceevveeeiieeerieeeiieeeiie e 21
2.4.19 Emberi viselkedés és KOMMUNIKACIOcevveeieriieniirienieniieienieieeieeeeie e 21
2.4.20 A jog szerepe a modern tarsadalmakban.............ccceeeiieiieniiiiiiiniiieiee e 21
2.4.21 Innovativ informacids és kommunikacids technoldgidkccceevvvevieeciiennnnn. 21
2.4.22 Mesterséges intelligencia az IT biztonsag teriiletén............ocevvvevievienienenniennen. 21
2.4.23 IT biztonsagi fejlesztések mindség €s projektmenedzsmentje...........ccceeeeveenneenn. 22
2.4.24 Tudésmenedzsment az IT biztonsag terliletén...........cccveevvieeeiieeiieeciee e, 22
2.4.25 Kultlra, sport, munkahelyi JOIEt.........ccooiiiiiiiiiiiie e 22
2.4.26 Az elektronika fizikai alapjaicooceeiieiiiiiiiiie e 22
2.4.27 Elektronikus AramKOTOKc.eoviiiiiiiiiiiiieiieeie ettt 22
2.4.28 MENLOTT OTAeeueieuiiiiieieeieeite sttt ettt e st e e et e bt e e e st e bt entesaeenbeenseeneenbeensesneens 22
A 52jat fe]1esZtES DEMULALASAeevvieeeiieiieeiieeieeete ettt e re e ebeeseaeebeesana e 22
3.1 FiziKai TeNASZETLEIV ..ottt s 23
3.1.1 Program SPECIIKACIO.......cciieiieeiiieiiecie ettt saeeereesaee e 23
3.1.2 Technologiai stack 0sszefoglaldsacooceeviiiiiiiiiiiiiie e 26
3.2 UZEMEIEST LEIVvvoveeeeeeee et ne e n e 26
3.2.1 Hardver- és szoftverkovetelmények...........cccovieniiiiniiniiiiiieecccce 26
3.2.2 Telepités €s DEUZEMEIEScccueevuiiiiiiiiiieiieeie ettt 27
33 IT DIZEONSAZE LRIV ittt ettt e e tee e e tee e sabee e snbaeenaseeenes 28
T8 20 B © 5575 1 o B PSSR 28
3.3.2 Third party login — SteamLoOgINccceeeiiieeiiieeiieeeiieeee e 29
3.3.3 0 Steam AP ... et 29
3.3.4 JWT Bearer hiteleSitesoeiuiiiiiiiiiiiieiieceee ettt 30
3.4 LogiKai T@NASZETLRIVc..eeiiiieiieeiiieie ettt ettt ettt e saeeens 30
3.4.1 Adatstrukturdk logikai szinten - Entitasok, attributumok, kapcsolatok 30
3.4.2 Felhasznaloi MOdUlcc.cooviiiiiiiiiiiiieceeeeee e 32
343 Csere-1Z€ny MOAULooiiiiiiiiieeiee e e 34
3.5 IMPIEMENTACIOeeeeiieeiieecee ettt e et e e e st ee e e aeeesnseeessseeenns 36
351 BEVEZETO -ttt et 36
3.5.2 Frontend megvalOSitas.......cceeriiieiiieeiiieeiee ettt s 42
3.5.3 Backend megvalOSitasccccuiieiiiieiiieeieeeiee et 59
3.5.4 Microservice szerver oldal megvalOsitasccoecueeviiieiiienieiiiieieeeeee e 63

3.6 A TeNASZET tESZECIESE ... 65
3.6.1 Kliensoldali tesztelés modszertana €s megvaldsitasa........ccceeeveeeevieerveeerieeennnnn. 66
3.6.2 Szerveroldali tesztelés modszertana és megvaldsitdsa........coeeveeeveeeevieerveeennnenn. 69
3.6.3 Teljesitmény- és skalazhatosagi teSZtelEsuoevvvrerriiieriiiieeieeeie e 69

3.7 Mesterséges intelligencia szerepe a dolgozatbanccccccvevvieiieniicniencieciiee, 75
3.7.1 Technikai tervezés és kOdoptimalizalasccocveriieeiiienieiiiienieeieesie e 75
3.7.2 Adatbazis SEMA tEIVEZES......cccuerueiriieiiriieieeie ettt sttt s 77
3.7.3 Szakirodalmi KUtatdsccceriiriiiiinieieiererieeeee e 79
3.7.4 Dokumentaci6 és szakdolgozat Strukturalascccceeviierieiciiiniieiienie e 81

Y 1 F ST URSRPSRRSRRR 84
4.1 Frontend technoldgia valasztdsa: Angular vs React.........cccoveieiiiiiiniiiiiiiien, 84
4.2 Backend valasztds: ASP.NET Core vS NOde.jS....ccccocuirieniriinienieienicnecieeeeneenne 84

5 KONKIUZIOK. ...ttt ettt ettt ettt et e st e ebeesateens 85

5.1 Kliensoldali technoldgia VAIASZtASa.........c.eeeveeriieriieiieeie et 85

5.2 Szerveroldali technoldgia VAIASZtASa.........cc.eevvieiiieniieiiecie e 86

5.3 OSSZEEZES oottt 86

6 OSSZEFOZIAIAS, JOVOKED ...evveeeeeeeeeeeeeee ettt 86
6.1 OSSZETOGIALAS ...t s e s e 86
6.2 JOVOKED ...ttt et ettt e st e et e et e s naeebeenntaens 87

T MEIEKIELEK ..ottt ettt et e et et e et e e sneeeaneas 88

7.1 ADBTAJEZYZEK ..ottt 88

7.2 ROVIAIESEK JEZYZEK ..o e 91

7.3 DefiniCIOK JEZYZEKooovuriieiieee ettt e 92

7.4 HIVaAtKOZASOK ..o 94

7.5 FOITASKOAOK ...t 97
7.5.1 Csere-igény keresés KOAréSzIetooouiiiiniiiiiiiiiiiieteeeeee e 98
7.5.2 Item-selector-facade KOAIészIet...........coeriiiiiiniiiiiiiiicee e 99
7.5.3 Item-container KOAreSZItcooviviiiiiiiiiniiiicieiiee e 101

1 Bevezetés

A digitalis gazdasag egyik legdinamikusabban novekva teriilete a videojatékokhoz kapcsolodo
virtualis targyak kereskedelme. A globalis virtudlis targyak piaca 2024-ben 91,66 milliard USD
ertéket képviselt, amely 2025-re varhatoan eléri a 112,33 milliard USD-t, majd 2030-ra 261,36
milliard USD-ra no.” (Mordor Intelligence, 2025) ,,Az online piacterek (pl. Dmarket -

https.//dmarket.com) — kiilonosen a tobb millio aktiv felhaszndloval rendelkezé nemzetkozi

platformok — ma mar jelentos forgalmat bonyolitanak.” (LinkedIn/Verified Market Reports,
2025) ,,4z online jaték eszkozok kereskedelmének piaca 2024-ben 3,6 milliard USD bevételt ért
el, amely 2033-ra varhatoan 12,2 milliard USD-ra novekszik. A rajtuk cserélt vagy értékesitett
digitalis eszkozok pedig gyakran kézzel foghato piaci értékkel rendelkeznek.”
(LinkedIn/Verified Market Reports, 2025)

»A Valve altal iizemeltetett Steam a vilag egyik legnagyobb digitalis jatékdaruhaza és
tartalomterjeszto rendszere” (SQ Magazine, 2025), amely nemcsak jatékok értékesitését,
hanem a hozzajuk kapcsolodo virtudlis targyak adésvételét is lehetdvé teszi. E targyak —
amelyek megszerzése sok esetben ritka vagy iddszakos — komoly keresletnek 6rvendenek a
jatekoskozosségben. ,,4 Team Fortress 2 esetében 2011 augusztusa és 2013 majusa kozott tobb
mint 70 millio cseretranzakcio zajlott, amelyben t6bb mint 300 millio darab virtualis targy

csereélt gazdat, és 4 267 832 egyedi kereskedo vett részt.” (Varoufakis, Y., 2012)

1.1 Kutatasi és fejlesztési célok

A szakdolgozatom célja egy webalapu targycsere-hirdetési platform megtervezése (vo. 3.4

fejezet) €s megvalositasa (v0. 3.5 fejezet), amely lehetdveé teszi a Steam-felhasznalok szamara,
hogy:

o birtokukban 1év6 virtualis targyakat (pl. sapkdk, fegyverek, kozmetikai targyak)
meghirdethessenek (v0. 3.5.2.5 fejezet)

e ajanlatokat tehessenek mas felhasznalok hirdetéseire (vo. 3.5.2.11 fejezet)

o bongésszenek masok altal meghirdetett targyak kozott, azaz megkeressék az altaluk

keresett targyakat (vo. 3.5.2.7 fejezet)

https://dmarket.com/

A rendszer kialakitdsanal elsddleges szempont a felhasznaldi élmény, a biztonsag (vo. 3.3.
fejezet), valamint a Steam API és OpenlD autentikécio integracidja (vo. 3.3.1 fejezet). A
fejlesztés modern technoldgiakra épiil: vo. a frontend oldal Angular keretrendszert (v6. 3.1.1.1
fejezet), a backend oldal pedig C#-ot hasznal (v6. 3.1.1.2 fejezet).

1.2 Problémafelvetés és indoklas

A jelenlegi piacterek (pl. backpack.tf) és cserefeliiletek (pl. posts.tf) gyakran korlatozott
testreszabasi lehetdséget kinalnak: ,,4 spell (varazslat) szerinti sziirés 2025 juniusaban
eltavolitasra keriilt a backpack.tf feliiletéerél, ami a felhaszndlok szamara jelentos
funkciovesztést jelentett” (backpack.tf forums, 2025). Egy Reddit-felhaszndl6 szerint ,,az all-
class kozmetikai targyak sziirése sem megoldott a backpack.tf-en, csak koriilményes URL-
modositasokkal (pl.? class=all paraméter kézi hozzaadasaval az URL végéhez) vagy kiilon

bongészobovitmenyekkel (pl. TF2 Trading Enhanced) érheté el.” (Reddit r/tf2, 2025)

A platformok nem minden esetben biztositanak konnyen kezelhetd feliiletet a felhasznalok
szamara. Egy 2024-es Reddit-poszt szerint a TF2 felhasznaloi feliilete borzalmasan zstfolt €s
zavaros lett: "a teljes képernyo teljesen atlathatatlan, minden lehetséges opciot bedobtak
anélkiil, hogy barmilyen gondolat lenne mégétte." (Reddit r/tf2 (1), 2024). A poszt kiemeli,
hogy az aruhaz szervezése frusztrald: lehet szilirni osztaly és kozmetikai targy szerint, de nincs
lehetdség az osztaly-specifikus sapkak leszlirésére, és nincs sziirési opcid a taunts

(gunyolodasok) esetében osztaly alapjan.
1.3 Motivacid

A szakdolgozat témajanak valasztasat kettds motivacio vezérelte: személyes tapasztalat a Team
Fortress 2 kereskedési kozosségben szerzett éveim alapjan, valamint a piaci kdrnyezet és a
virtualis targykereskedelmi 6koszisztéma gazdasagi jelentdsége (lasd 1.1 fejezet). A motivacid
bemutatasa két alfejezetben keriil részletezésre: a személyes tapasztalatok és problémak

ismertetése, majd a piaci kornyezet €s a globalis virtualis tdrgypiaci trendek elemzése.

1.3.1 Személyes motivacid

Személyes kapcsolatom a Team Fortress 2 jatékkal tobb évre nytlik vissza. A jaték nem csupan
szorakozési lehetdséget nyljtott szamomra, hanem egy komplex virtudlis gazdasagot (vo. 1.
fejezet) 1s feltart eléttem, amelyben aktiv résztvevové valtam. Kezdetben a jatékon beliili
kereskedési rendszert hasznaltam, ahol kozvetleniil a szervereken taldlhatd jatékosokkal

cseréltem targyakat. Késobb kiillonbozd kiilsé platformokat is kiprobaltam, példaul a

7

https://backpack.tf/
https://posts.tf/
https://backpack.tf/

backpack.tf, tf2outpost (mara mar megszint...) és egyéb kozosségi kereskedési oldalakat.
Ezeknek a platformoknak a hasznalata sordn szdmos problémaval taldlkoztam. A jatékon beliili
kereskedés rendkiviil koriilményes folyamat: meg kell talalni egy kereskeddpartnert, hozza kell
adni a Steam-en, kezdeményezni kell egy kereskedési munkamenetet, majd tobbszori
megerdsités utan végrehajtani a cserét. A kiilsé platformok gyakran elavult felhasznaloi
feliilettel rendelkeznek, korlatozott sziirési lehetdségeket kindlnak. (vo. 1.2 fejezet) Ezek a
tapasztalatok 0sztonoztek arra, hogy egy sajat megoldast fejlesszek ki, amely modern
technologidkra ¢épiill ¢és kikiiszoboli a meglévo platformok hianyossagait. Fejlesztoi
szemszOgbdl pedig lehetdséget lattam abban, hogy a tobb éves Angular (v0. 3.1.1.1 fejezet) és
ASP.NET Core (v0. 3.1.1.2 fejezet) tapasztalatomat egy valds problémara alkalmazzam,

mikozben fejlesztem a full-stack készségeimet.

1.3.2 Piaci motivacio

»A Team Fortress 2 virtudlis targyai egy jelentés méretii és aktiv piacot alkotnak a Steam
okoszisztéman beliil. Kutatasi adatok szerint 2011 augusztusa és 2013 majusa kozott tobb mint
70 millio cseretranzakcio zajlott le a TF2-ben, ami atlagosan té6bb mint 100,000 darab
kereskedést jelent naponta, azaz t6bb mint egy tranzakciot masodpercenként.” (Varoufakis, Y.,
2012) Ezekben a tranzakciokban tobb mint 300 millié darab virtudlis targy cserélt gazdat, és
Osszesen 4 267 832 16 egyedi kereskedd vett részt a piacon. ,,4 szélesebb Steam platform is
jelentbs novekedést mutat. 2024-ben a Steam piaca 4,902 millio USD értéket képviselt, amely
2025-re varhatoan 5,385 millio USD-ra no, és 2032-re elérheti a 9,195 millio USD-t, 9.6%-0s
éves novekedési iitemmel.” (Intel Market Research, 2025) ,,4 platform 2025 els6 negyedévében
147 millio fo havi aktiv felhasznalot ért el, amely jelentés novekedést jelent a 2024-es 132
millio-féhoz képest.” (SQ Magazine, 2025) A virtudlis targykereskedelem tehat egy milliardos
piacot mozgat6 gazdasagi tevékenység. A Team Fortress 2 esetében a targyak komplexitasa -
kiilonbozd ritkasagi szintek, effektek, szinezések, tulajdonsdgok - még érdekesebbé és
kihivasokkal telibbé teszi a piacot. Egy jol megtervezett platform, amely hatékonyan kezeli ezt
a komplexitast és javitja a felhasznaldi élményt, valds piaci értéket képviselhet mind a

kereskeddk, mind az atlagos jatékosok szamara.

1.4 Célcsoportok

A platform altal megcélzott felhasznaldi csoport az azonositasa elengedhetetlen a rendszer
funkcioinak és a felhaszndloi élmény megfeleld kialakitasdhoz. A célcsoport elemzése soran

figyelembe vettem a demografiai adatokat, a technologiai jartassagot, a felhasznaloi szokasokat

8

és a specialis igényeket. Az Altalam definialt célcsoport elsésorban az ,,aktiv Team Fortress

2 keresked6k”
Demografiai jellemzok

»A Steam platform felhasznaloi adatai alapjan a legnagyobb felhasznaloi csoport a 25-34 éves
korosztaly (38%), mig a 18-24 évesek 31%-ot tesznek ki.” (SQ Magazine, 2025) ,,Egy 2024-es
Reddit TF2 kézosségi felmérés szerint (622 résztvevo) az életkori megoszidasa a kovetkezo”

(Reddit r/tf2 (2), 2024):

e 14 vagy fiatalabb (43 f0)
o 15-19 éves (246 6)

e 20-25 éves (223 1)

e 26-30 éves (66 6)

o 31-40 éves (28 f0)

o 41+ éves (16 16)

A felmérésbol lathato, hogy a megkérdezettek 75,4%-a a 15-25 éves korosztalyba tartozik.
Fontos megjegyezni, hogy ez egy nem reprezentativ, Onkéntes Reddit felmérés, igy az

eredmények nem altalanosithatok az egész TF2 kozosségre.
Aktualis jatékos statisztikak (2024-2025)

A jelenlegi (2025 oktober) szamok alapjan, az elmult 30 napban dtlagosan 46 602 egyidejii
jatékos jatszik a Team Fortress 2 jatékkal.” (Live Player Count, 2025) Aktiv keresked6k pontos
szdmara vonatkoz6 hivatalos statisztika nem érhetd el, azonban van egy jelenleg is aktiv csere-
igény hirdetd feliilet, ahol fel van tiintetve a regisztracidos szdm, amely 4 000-5 000 aktiv
felhasznalo-t jelent. (posts.tf, 2025), igy egy konzervativ becslés alapjan kimondhato az, hogy
nagyjabol az aktiv jatékosok 5-10%-a kereskedik aktivan.

1.5 Hasznossag

A platform elsésorban a Team Fortress 2 virtualis targyak kereskedelmével foglalkozo
jatékosokat, kereskedoket és kozosségeket segiti: A vizsgalt kereskedési platform és
funkcionalitasok jellemzden a célcsoportokban (lasd 1.4 fejezet) azonositott felhaszndloi
csoportok igényeit elégitik ki, akik vélhetden az elényoket-hatranyokat figyelembe véve (vo.

1.2 fejezet) valasztanak majd a meglévd platformok és az j megoldas kozott.

1.5.1 Felhasznaloi elonyok és idohatékonysag
Az aktiv kereskedok szamara a platform idomegtakaritast €s hatékonysagnovekedést kinal:

Idémegtakaritas: Ha egy felhasznald a sajat igénye alapjan keres egy konkrét targyat (vo.
3.5.2.7 fejezet), azt hatékonyan megtalalhatja ezen a platformon, jelentds id6t megtakaritva
ezzel. Egy optimalizalt keresési és szlirési rendszerrel ez az id6 jelentdsen csokkenthetd.
Természetesen, a hasznossag elofeltétele, hogy a keresett targy meghirdetésre keriiljon a

platformon, ami a felhasznél6i bazis novekedésével parhuzamosan javul.

Hatékonysag novekedése: A jobb sziirési lehetdségek - beleértve a spell-ek (varazslatok),
paint-ek (festékek) és effektek alapjan torténd keresést - lehetdvé teszik, hogy a felhasznalok
alaposabb és célzottabb keresést hajthassanak végre (vo. 3.5.2.7 fejezet). Egy hatékonyabb
platform, amely atfogd sziirési lehetOségeket biztosit, felgyorsithatja a tranzakciokat ¢és

novelheti a sikeres kereskedések szamat.

Kozosségi tamogatas: A komment ¢s ajanlattételi rendszer (lasd 3.5.2.11 fejezet) interaktiv

platformot teremt, amely lehetdvé teszi a felhasznalok szamara - kiilondsen a kezd6k szamara,
hogy tanédcsot kérjenek tapasztaltabb kereskeddktdl, ajanlatokat tegyenek és kozvetlen
kommunikéciot folytassanak. A platform komment funkcidja segiti a biztonsagos és atlathato

kereskedési gyakorlatok kialakitasat.

10

1.5.2 Fejlesztési koltségek és megtériilési modell
Fejlesztési raforditasok:

A platform kifejlesztése soran az alabbi munkaora raforditasok meriiltek fel (1. tdblazat).

Fejlesztési fazis Becsiilt munkaora | Junior fejlesztoi | Becsiilt koltség (Ft)
orabér (Ft)

Tervezés és | 40 ora 4166 Ft 166 640 Ft

specifikaciod

Backend fejlesztés | 100 ora 4166 Ft 416 600 Ft

(ASP.NET Core)

Frontend fejlesztés | 120 ora 4166 Ft 499 920 Ft

(Angular)

Microservice 48 oOra 4166 Ft 199 968 Ft

fejlesztés (Node.js)

Tesztelés ¢és | 50 ora 4166 Ft 208 300 Ft

optimalizalas

Dokumentacid 30 ora 4166 Ft 124 980 Ft

Osszesen 388 6ra 4166 Ft 1616 408 Ft

1. tabldzat - Fejlesztési koltségek fazisok szerinti bontdsban — Forrds: Sajat szamitds
A becslés junior full-stack fejlesztéi orabér alapjan késziilt (4 166 Ft/6ra), amely a magyar
piacon jellemzd 2025-ben. Az dradijat a frontend és C#/.NET fejlesztési minimum brutt6 havi
fizetés medianjabol szdmoltam ki. (Hays salary guide, 2025) Senior fejlesztd esetén (8 333

Ft/6ra) a koltség ~3,2 milliod Ft koriil lenne.
Uzemeltetési koltségek (havi):

A kiszdmolt koltségek a 2. tablazat-ban tekinthetéek meg.

11

Koltségelem Havi koltség (Ft) Eves koltség (Ft) Forras

Domain név (.tf) 500 Ft 6 000 Name
Hosting (VPS, 4GB | 4 058 Ft 48 696 FT Rackforest
RAM, 2 CPU)

Adatbazis Ingyenes (VPS-en | Ingyenes (VPS-en | -
(PostgreSQL) fut, kiilon | fut, kiilon

szolgaltatds nélkiil, | szolgéltatds nélkdil,

beépitett PostgreSQL | beépitett PostgreSQL

installacioval) installacioval)

SSL tantsitvany Ingyenes (Let's | Ingyenes (Let's | -
Encrypt Encrypt
hasznalataval, hasznalataval,
automatikus automatikus
megujitassal) megujitassal)

Ossz. lizemeltetési | 4 558 Ft 54 696 Ft -

koltség

2. tablazat - Uzemeltetési koltségek havonta és évente — Forrds: Sajat szamitds

Bevételi modell és megtériilés:

A platform jelenleg nonprofit jellegli, ingyenes szolgaltatasként miikodik, igy kozvetlen

bevétele nincs. A megtériilés alternativ modjai:

¢ Prémium felhasznaloi funkciok (bump limit emelése, kiemelés)
o Becsiilt havi bevétel: 50 000 — 100 000 Ft
o Feltétel: 1000+ aktiv felhasznalo, 5% konverzio
o Affiliate linkek
o Becsiilt havi bevétel: 20 000 — 40 000 Ft
o Feltétel: Napi 1000+ 6 latogato
e Osszesen (optimista forgatékonyv)
o Becsiilt havi bevétel: 70 000 — 140 000 Ft

12

https://www.name.com/
https://portal.rackforest.com/

Megtériilési ido (optimista forgatokonyv):

e Fejlesztési koltség: 1 616 408 Ft

e Havi lizemeltetés: 4 558 Ft

e Eves iizemeltetés: 54 696 Ft

e Havi bevétel (atlag): 105 000 Ft

e Nett6 havi bevétel: 105 000 Ft —4 558 Ft =100 442 Ft
o Megtériilési ido: 1 616 408 / 100 442 Ft = ~16 honap

Realisztikus kovetkeztetés

Kozvetlen pénziigyi megtériilés csak akkor lehetséges, ha a platform eléri a kritikus felhasznéloi
tomeget (5000+ {6 aktiv felhasznald), ami 12-18 honapos aktiv marketing tevékenységet
igényelne. Fontos hangsulyozni, hogy a platform elsddleges célja nem az iizleti haszonszerzés,

hanem a szakmai kompetencidk fejlesztése és a kozosségi hozzajarulas.

1.6 A szakdolgozat felépitése

A szakdolgozat struktirdja harom f6 részbdl all: a bevezetd fejezetek a téma hatterét és
indoklasat mutatjak be, a {6 fejezetek a rendszer tervezését és fejlesztését részletezik, mig a
zard fejezetek Osszegzik az eredményeket és jovobeli fejlesztési iranyokat vazolnak fel. A

fejezetek egymasra €piilo logikai kapcsolatban allnak.

1.6.1 Altalanos felépités

A dolgozat els6ként ismerteti a digitalis piacterek €s a Steam gazdasagi modelljének hatterét
(vo. 2.2 fejezet), majd bemutatja a rendszer tervezési folyamatait és architektardjat (vo. 3.4

fejezet). Ezt kovetden részletesen targyalja az implementéciot

(vo. 3.5 fejezet) és a tesztelés eredményeit (vo. 3.6 fejezet).

Végiil a zar6 fejezetek Osszefoglaljak a fejlesztés tapasztalatait, kiemelik a rendszer eldnyeit,

valamint javaslatokat tesznek a jovobeni bovitési lehetdségekre.

1.6.2 Szakdolgozat korlatjai

A szakdolgozat terjedelmi korlatjai miatt az alabbi témak részletes kifejtésére nem volt

lehetdség, azonban felismerem ezek fontossagat a teljeskorli megértéhez:

Biztonsagi tesztelés és penetracios tesztek:

13

A rendszer ¢és a szakdolgozati dokumentaciom alapvetd biztonsdgai kérdéseket megvalaszol,

implemental (v0. 3.3 fejezet), azonban atfogd biztonsag audit és penetracios tesztelés nem

keriilt elvégzésre. Ez kiilonOsen fontos lenne a felhasznéloi adatok védelme szempontjabol.

Adatvédelmi és jogi aspektusok:

A GDPR szabalyzat, siiti politika, felhasznaloi szerzodések jogi hatterének részletes kifejtésére

nem kertilt sor, akar 6Gnmagéban is megallna a helyét egy kiilon szakdolgozati témanak.

Monitoring és statiszika:

A rendszer monitorozasa €s a teljesitménymutatok folyamatos kovetése szakmai szempontbol

fontos, de a dolgozatban csak emlités szintjén szerepel. (lasd 3.6.3 fejezet)

1.6.3 Formazasi szabalyok és jelolések

A szakdolgozat olvashatosdganak és konzisztencidjanak biztositasa érdekében az alabbi

formazasi szabalyokat alkalmaztam:
Fejezetek és alfejezetek szamozasa:

o Fofejezetek: Arab szdmozas (1., 2., 3.)
o Alfejezetek: Hierarchikus szdmozas (1.1, 1.1.1, 1.1.1.1)

e Maximum 4 szintli mélység alkalmazasa az atlathatosag érdekében
Hivatkozasok és kereszthivatkozasok:

o Fejezetre valo hivatkozas: (vo. 3.5.2 fejezet), (lasd 3.5.2 fejezet), (3.5.2 fejezet)
o Abra hivatkozas: (X. abra) — leiras

e Forrashivatkozas: (Forrés: cim, év), + dolt betiistilus
Hangsulyozas és kiemelés:

e Fontos fogalmak: félkoveér betiistilus

e Technikai roviditések: nagybetiis (API, JWT)

Listak és felsorolasok:

e Pontozott lista: Szovegfolyamban torténd felsorolashoz

e Szamozott lista: Sorrend vagy 1épések esetén

Tablazatok:

14

e Cim: Minden tablaznak van cime

2 Szakirodalmi attekintés

A szakdolgozat témdajanak mélyebb megértéséhez elengedhetetlen a virtudlis
targykereskedelem elméleti alapjainak és piaci kornyezetének attekintése. Ez a fejezet
bemutatja a Team Fortress 2 targyrendszerének mukodését, a Steam platform szerepét a

virtualis gazdasagban.

2.1 Virtualis targyak

Ezek a targyak egy harmadik feles platformon szerepelnek, a Steam-en (v0. 2.3 fejezet). A
Steam egy olyan feliilet, ahol regisztracidé utan lehet6sége van a felhasznalonak jatékokat
vasarolni, amelyek a profiljaban keriilnek eltarolasra. Ezek a jatékok idonként biztosithatnak
jutalmakat, amelyek valos piaci értékkel rendelkeznek (vo. 1.3.2 fejezet). Az emlitett virtualis
termékekre évrél-évre tobb tényezd (pl. ritkasag, limitalt idészaka események-halloween, tf2

jatékfrissitések, youtube tartalomgyartok altal készitett tartalmak) hatdsara egyre nagyobb a

kereslet (vo. 1.3.2 fejezet).
Ez betudhato annak, hogy bizonyos targyak megszerzésére (pl. unusual tipust sapkak — Burning
Flames Team Captain, Golden Frying Pan) kevés az esély.
Az alapszintli (unique) targyakat jaték soran lehet megszerezni, minél tobb 1d6t tolt valaki a
jateékkal, annal tobb targyat szerezhet meg, bar a megszerezhetd targyak szdma limitalva van (~
10 db), heti szinten. Az unique tipusu targyak kozott tobb fajta targy van, a fajta, mint fogalom
azt jelenti, hogy a jaték soran, milyen targyként hasznalhato, ezeknek a fajtaknak a listaja (3.
tablazat — 4. tablazat).

15

Targyfajtak

Fo kategoria Alcsoport Leiras

Weapon (Fegyver) Primary Weapon Fofegyver, pl rakétaveto,
puska

- Secondary Weapon Masodlagos fegyver, pl
pisztoly

- Melee Weapon Kozelharci eszkdz, pl balta,
baseball iit6

Taunt (Gunyolodas) - Animacidk ¢és mozdulatok,
pl. tdnc, nevetés

Hat (Sapka) - Karakter altal viselt fejfedo

Cosmetic (Ruha)

Karakter megjelenését

modosito Oltozet

Parts (Alkatrész) - Specidlis statiszikai
funkciokat adhat
fegyverekhez/ruhdkhoz

Spells (Varazslat) - Id6szakos eseményeken
szerezhetOm
kinézetmodositod effekt

Paint (Festék) - Ruhdk és sapkdk szinének

modositasa

3. tablazat - Team Fortress 2 targyak fo kategoriai — Forras: Sajat osszegzés

16

Ritkasagi tipusok

Tipus Leiras

Unique Altalanos targy, alapértelmezett ritkasag

Strange Nyilvantartja az eliminalt ellenfelek szamat

Genuine Korlatozott mennyiségben kiadott, ritka

Unusual Latvanyos, mozg6d hattéreffekt, rendkiviil
ritka

Strange-Unusual Effekt + statisztikai szamlalé egyben

4. tabldzat - Team Fortress 2 targyak ritkasdgi tipusai — Forrds: Sajt Gsszegzés
A téblazatok csak bevezetés jelleggel késziiltek, az els6dleges cél az volt, hogy ismertessem a
jaték ¢és a targyak kozotti kapcsolatot, illetve az emlitett tipusok, targyak tulajdonsdganak
szamossagat szerettem volna roviden bemutatni, mert a megfeleld hattérismeretek nélkiil a
projekt lényege laikusok szamdra nem valik magatdl értetddden érhetové. Ezek mellett tényleg
rengeteg tényezO van a piacon, ami egy targy aradt meghatarozzak, ilyen a ritkasaga,
elétorténete, mennyire népszerli a targy a jatékosok altal, milyen osztalyhoz, karakterre valo a
targy stb.
Ez tényleg csak egy bevezetd, de azt gondolom, hogy a targyak tulajdonsadgainak szdmossaga

és Osszetétele megfeleld kombinatorikai kihivassal rendelkezik egy szakdolgozati témahoz.

2.2 Online piacterek fogalma

Az online piacterek olyan webalapu platformok, amelyek lehetdvé teszik eladok és vasarlok
szamara, hogy kiilonféle termékeket vagy szolgéltatdsokat kindljanak. Ezek a piacterek
kozvetitd szerepet toltenek be, biztositva a piaci szereplok kozti kapcsolatokat, valamint a
felhasznalotargyak eladasi szandékanak népszeriisitését. Az online piacterek legfébb jellemzdi
koz¢é tartozik a széles kindlat és a sokféle értékesitési forma, amely magéaban foglalhatja a
kozvetlen ajanlattételt, aukciokat vagy licitalast. A digitalis piacterek eldénye, hogy a fizikai
korlatokat athidalva globalis kozonséget érnek el. A Valve Steam platformja (vo. 2.3 fejezet)
kifejezetten videojatékokhoz kapcsoldodo virtualis targyak kereskedelmét teszi lehetoveé. Az

online piacterek fejlédése szorosan Osszefiigg az internetes technologidk fejlédésével, a

17

felhasznaldi igények valtozasaval, valamint a digitalis gazdasag novekedésével. Egyre
fontosabb szerep jut az API-alapu integracioknak, amelyek lehetové teszik, hogy kiilonb6z6
platformok és szolgaltatasok Osszehangoltan miikodjenek, ezzel egyszerlsitve és bdvitve a
piaci lehetdségeket (pl. egyedi szoftverek készitése, amelyek felhasznaljak az API integracidkat

— automata csere-végrehajtd botok).

2.3 A steam platform

»A Steam a Valve Corporation dltal fejlesztett digitalis tartalomterjeszto és -kezeld rendszer,
amely 2003. szeptember 12-én jelent meg hivatalosan. A platform eredeti célja a Valve
jatékainak automatikus frissitése volt, kiilonosen a Counter-Strike esetében, ahol a manudlis
patch-ek letoltése és telepitése napokra bénitotta meg a jatékot. A Steam fejlesztése 2002-ben
kezdodott "Grid" és "Gazelle" munkacimeken, és 2003-ban bétatesztelési fazisba lépett. A
platform attérést 2004 novemberében érte el, amikor a Half-Life 2 megjelenésekor a Steam lett
az elsé magas profilu jaték, amely digitdlis formaban is elérheté volt. Ez a lépés jelentos
visszhangot valtott ki, mivel a jaték retail példanyai is Steam aktivaciot igényeltek, ami
kezdetben szerver tulterheléshez és felhasznaloi elégedetlenséghez vezetett. A platform azonban
folyamatosan fejlodott, és mara a PC jatékok legnagyobb digitalis terjesztési platformjava valt,
2013-ban a piac 75%-at uralva.” (Wikipédia, Steam)

2.4 A képzés tantargyainak és a szakdolgozati témanak a kapcsolata

Jelen fejezetben felsoroldsra keriiltek azok a targyak, amelyek a képzés soran
elméleti/gyakorlati tudast adtak.

2.4.1 Programozas

A programozas tantargyak (I-III) sordn lehetéségem volt Ujra elsajatitani €és biztosabb alapra
helyezni a C# programozasi nyelv és az ASP.NET Core keretrendszer ismereteimet. A tantargy

soran gyakoroltam az objektumorientdlt programozasi elveket, amelyek kulcsfontossagtiak

voltak a backend architektira kialakitdsakor (lasd 3.5.3 fejezet).

2.4.2 Adatbazisok

Az adatbazis tantargyak soran elsajatitottam a relacios adatbazisok tervezésének és kezelésének
alapjait, beleértve az SQL nyelvet, a normalizalast, az indexelést és a lekérdezés-optimalizalast.

A szakdolgozatban implementalt adatbdzis-struktira - felhasznalok, csere-igények, targyak,

kommentek kozotti relaciok (lasd 3.5.3 fejezet) - tiikr6zi az adatbazis-tervezés sordn tanult

18

elveket, kiilonos tekintettel a kiilsé kulcsokra, az egy-sok €s sok-sok kapcsolatokra, valamint a

lekérdezési teljesitmény optimalizalasara.
2.4.3 Adatszerkezetek ¢és algoritmusok

A keresési algoritmus implementaldsa soran (v6. 3.5.3.6 fejezet - TradeService

SearchTradesAsync metodus) és lista miiveletek (LINQ Where, Select) kertiltek alkalmazasra.

A pagination algoritmus (Skip/Take) és a sziirési logika 0sszetett adatszerkezeteken alapul.
2.4.4 Szoftverarchitektirak

A rétegelt (layered) architektura alkalmazasa: Controller — Service — Repository — Database
(v0. 3.5.3 fejezet). A mikroszerviz architektira megértése lehetdvé tette a Steam API parser

kiilon Node.js szolgaltatasban vald elkiilonitését (vo. 3.5.4 fejezet), amely REST API-n

keresztiil kommunikal a £f6 alkalmazassal.

2.4.5 Halozatok €s szamitogép architektirak

A HTTP protokoll miikodésének ismerete sziikséges volt a RESTful API tervezéséhez (GET,
POST, PUT, DELETE metodusok) (v6. 3.5.3.6 fejezet). A CORS konfiguralasa, SSL/TLS

haszn4alata.

2.4.6 Informatikai védelem és biztonsag

JWT (JSON Web Token) alapu authentikdcido implementéalasa (vo. 3.3.4 fejezet), a Steam
OpenlD protokoll (v6. 3.3.1 fejezet) biztonsagi szemléleteinek megértése elengedhetetlen volt

a felhasznaloi bejelentkezéshez.

2.4.7 Felhasznaloi interfészek és vizualizacio

Az PrimeNG komponenskonyvtar hasznalata, reszponziv diz4jn kialakitasa (vo. 3.5.2 fejezet).
A felhasznaloi élmény optimalizalasa (toltési allapotok, hibakezelés, felugrd ablakok jelzése)

kozvetleniil erre a tantargyra épit.

2.4.8 Szoftvertesztelés

A teljesitménytesztelés soran alkalmazott médszertan, warm-state és cold-state tesztelés (vO.
3.6.3 fejezet) €s a kiilonbozd tesztelési szintek, kliensoldali (v6. 3.6.1 fejezet) €s szerveroldali

(v0. 3.6.2 fejezet) unit tesztek megértése ezen tantargy ismeretkorébol szarmazik.

19

2.4.9 Rendszertervezés

A logikai rendszerterv elkészitése (vo. 3.4 fejezet), Use Case diagramok, adatbazis ER
diagramok. A kovetelményelemzés és a rendszerspecifikacio elkészitése soran ez a tantargy

adta a mddszertani keretet.

2.4.10 Rendszermodellezés

Jelen targy ismereti mutatjak be azt, hogy hogyan érdemes a legegyszertibb és a legbeszédesebb

moddon modellezni az elkészitendd fejlesztést (vo. 3.4.1 fejezet és 3.4.2 fejezet).

2.4.11 Programozasi alapelvek és modszertanok

Git verziokezelés hasznalata, pull request-ek, commit message konvencidok. A SOLID elvek
(Single Responsibility, Dependency Injection) (vo. 3.5.2 fejezet) gyakorlati alkalmazasa a

service osztalyok tervezésénél.

2.4.12 Matematikai alapok

Statisztikai alapfogalmak (atlag, median) hasznalata a teljesitményteszt eredmények

értekelésénél (vo. 3.6.3 fejezet).
2.4.13 Operacios rendszerek

Jovobeli lizemeltetési 1€épésekhez hasznos elméleti/gyakorlati tudasra tehettem szert. Ezért is
vélasztottam az lizemeltetésnél a Linux alapt hosting kornyezet (Ubuntu Server) konfiguralasat

VPS-en (vo. 3.2.2 fejezet).

2.4.14 Villalati gazdasagtan

Koltség-haszon elemzés elkészitése: fejlesztési koltségek (munkadra % orabér), lizemeltetési

koltségek, megtériilési id6 szdmitasa (vo. 1.5.2 fejezet).
2.4.15 Vezetési és vallalkozasi ismeretek

Projektmenedzsment alapok alkalmazéasa: iddbecslés, erdforras-elosztas (400 munkaora
elosztasa), prioritasi dontések. A célcsoport elemzése és a piaci igények felmérése (vo. 1.4

fejezet és 1.1 fejezet).

20

2.4.16 Szoftverizemeltetés

Deployolasi stratégia feltérképezése (vo. 3.2.2 fejezet), illetve logolasi (vo. 3.5.3.8. fejezet)

beallitasok elvégzésre szerver oldalon, amely eldsegiti a felmeriild hibak nyomonkovetését,

illetve esetleges lasstisagi problémak feloldéasa is egyszeriibbé valik.
2.4.17 Eurdpai civilizacio és identitas
A digitalis gazdasag tarsadalmi hatasainak megértése. A virtualis targyak kulturalis

jelentdségének felismerése (vO. 1.1 fejezet) és a jatékos kdzosségek szerepe az eurdpai digitalis

kultaraban.

2.4.18 Komplex tarsadalomtudomanyi ismeretek

A célcsoport demografiai elemzése (18-35 éves férfi jatékosok) (vo. 1.4 fejezet).
2.4.19 Emberi viselkedés és kommunikacio

UX design soran a felhaszndloi pszichologia figyelembevétele (jatékositott rendszer:

tapasztalati pontrendszer (v0. 3.5.2.4 fejezet), bump mechanizmus). A komment funkcid

kommunikécios aspektusai €s a platform kozosségépito szerepe (vo. 3.5.2.11 fejezet).

2.4.20 A jog szerepe a modern tarsadalmakban

A szakdolgozat soran fejlesztett webalapt targycsere-platform tizemeltetése tobb jogi aspektust
(pl. GDPR adatvédelmi megfelelés, siitik szabalyozas, felhasznaldi adatok taroldsanak jogi
keretei, szellemi tulajdonjogok tisztazas) is érint, amelyek ugyan nem keriiltek részletes
kidolgozasra a dolgozatban (vo. 1.6.2 fejezet), de tudatosult bennem azok fontosséga a valos

uzemeltetés soran.

2.4.21 Innovativ informdacios és kommunikacids technologiak

Modern web technolégidk (pl. Angular 18 (vo. 3.1.1.1 fejezet), ASP.NET Core 9 (vo. 3.1.1.2
fejezet)) alkalmazasa. Progressive Web App (PWA) lehetdségek alkalmazasa a szakdolgozat

soran.

2.4.22 Mesterséges intelligencia az IT biztonsag teriiletén

Al asszisztens (Perplexity Al) hasznalata kddoptimalizalasra, hibakeresésre és szakirodalmi

kutatédsra (v0. 3.7 fejezet).

21

2.4.23 IT biztonsagi fejlesztések mindség €s projektmenedzsmentje

Biztonsagi kovetelmények priorizalasa (authentikacio (vo. 3.3.4 fejezet) > authorizacidé >

adatvédelem).

2.4.24 Tudésmenedzsment az IT biztonsag teriiletén

Dokumentacio készitése (jelen szakdolgozat, API dokumentaci6 Swagger-rel) (vo. 3.5.3
fejezet).

2.4.25 Kultura, sport, munkahelyi jolét

Work-life balance fenntartdsa a 400 oras fejlesztési munka sordn. Id6gazdilkodas és

stresszkezelés a hataridok betartasa érdekében.

2.4.26 Az elektronika fizikai alapjai

Bar kevésbé direkten kapcsolodik, a szerverek fizikai miikodésének (CPU, RAM, SSD)
megértése segitett a teljesitménytesztek értékelésében €s az infrastruktira kivalasztasaban (VPS

specifikaciok) (vo. 1.5.2 fejezet).
2.4.27 Elektronikus aramkorok

Hasonldan az el6z0hoz, az alapvetd hardver-ismeretek hozzajarultak a szerverkonfiguracios
dontésekhez (RAM mennyiség, CPU magok szama a konkurens kérések kezelésére) (vo. 1.5.2
fejezet).

2.4.28 Mentori 6ra

A konzulens professzorral folytatott megbeszélések soran kapott visszajelzések alakitottdk a

dolgozat struktlrajat és tartalmat. A szakmai tanacsok beépitésre keriiltek.

3 A sajat fejlesztés bemutatasa

Ebben a fejezetben részletesen bemutatom a Team Fortress 2 kereskedési platform tervezési €s
megvalodsitasi folyamatat. A fejezet célja, hogy atfogd képet adjon a rendszer muszaki
megvalositasardl, a valasztott technologiai megoldasokrdl és azok indoklasarol. A platform
harom 6 architekturalis rétegre épiil: a felhasznaloi feliiletet kezeld frontend réteg, az tizleti
logikat ¢s adatkezelést végzd backend réteg, valamint egy specializalt microservice

komponens, amely a Team Fortress 2 targyak formatum-atalakitasat végzi. A technologiai stack

22

kivalasztasa soran figyelembe vettem a kdzosségi tamogatottsdgot, a dokumentacio mindségét,

a személyes tapasztalatomat €s a projekt-specifikus kovetelményeket.

3.1 Fizikai rendszerterv

A fizikai rendszertervben bemutatom a webalkalmazas fejlesztéséhez valasztott technologiai
stacket, valamint az alternativakat és a dontések indoklasat. A technologiavalasztas soran az
elsddleges szempontok a skaldzhatosag, a kozosségi tdmogatds, a fejlesztési sebesség €s a

személyes tapasztalataim voltak.

3.1.1 Program specifikacio

Jelen fejezet mutatja be, hogy milyen technologia dontéseket hoztam meg, illetve dontéseimet

indoklom.

3.1.1.1 Kliensoldali specifikacio
Valasztott kliensoldali megoldas: Angular

wAz angular egy Typescript-alapu ingyenes és nyilt forraskodu egyoldala webalkalmazas-
keretrendszer. A Google, valamint maganszemélyek és vallalatok kozossége fejlesztette ki. Az
Angular az AngularJs csapat adltal készitett nyelv ujrairasanak az eredménye.” (Angular

Documentation, 2025)
Valasztas indoklasa:

e Typescript integracio: Tipusbiztonsagot nyUjt, amely csokkenti a futasidejli hibak
szadmat ¢és atlathatobb, olvashatobb kodot eredményez

e Komponens-alapii architektira (11. abra): Ujrafelhasznalhato UI elemek kénnyii
fejlesztése

o Beépitett szolgaltatasok: Form kezelés, http kliens, routing, dependency injection

e Személyes tapasztalat: 4+ év Angular fejlesztdi tapasztalat (vo. 1.3.1 fejezet)

e RxJS tamogatas: Aszinkron adatkezelés reaktiv programozas paradigmaval
Megyvizsgalt alternativak:
Next.js (react alapu)

A NextJS egy nyilt forrdskodu webfejlesztési keretrendszer, amelyet a Vercel magancég hozott

lére, amely React-alapti webes alkalmazasokat kindl szerveroldali megjelenitéssel és statikus

23

megjelenitéssel. Elonye a gyors kezdeti betdltés és SEO-optimalizacio, hatranyai kozott

szerepel, hogy 1j keretrendszer tanulasat igényelné.
Vue.js

Progressziv JavaScript keretrendszer, amely egyszeri tanulasi gorbével rendelkezik. Nem
valasztottam, mert kevesebb tapasztalatom van benne, illetve szdmomra a kod olvashatosaga is

nehezebb.

3.1.1.2 Szerveroldali specifikdcid
Valasztott szerveroldali megoldas: C# és ASP.NET Core

»A C# a Microsoft dltal a .NET keretrendszer részeként kifejlesztett objektumorientalt
programozasi nyelv” (Microsoft, 2024). Az ASP.NET Core egy cross-platform, nagy

teljesitményii keretrendszer modern webalkalmazasok épitéséhez.
Vilasztas indoklasa:

o Eros tipusossag: Biztonsagos és karbantarthat6 kod
e Entity Framework Core: ORM tamogatas egyszerisiti az adatbazis muveleteket
e Aszinkron programozas: async/await kulcsszavakkal hatékony I/0 miiveletek

o JWT tamogatas: Beépitett authentikaciés middleware-ek
Megyvizsgalt alternativak:
Node.js:

Nyilt forraskodu, szerveroldali Javascript futtatokdrnyezet, amely a Chrome V8 javascript
motorjara €piil. Lehetdveé teszi, hogy javascript kddokat a szerveren is futtassunk, igy egységes
nyelvet hasznalhatunk a frontend €s backend fejlesztéséhez is. Bar a Node.js-t sikeresen
alkalmaztam a projekt microservice részében (lasd 3.5.4 fejezet), a f6 backend réteghez a C#-
ot valasztottam. A dontés oka, hogy szerettem volna egy erdsen tipusos, vallalati kornyezetben
kiprobalt nyelvet is elsajatitani, amely mélyebb objektumorientalt programozasi ismereteket
igényel. Emellett az egyetemi tanulmédnyaim soran a C# és a .NET Okoszisztéma részletesebb
tanulmanyozésara is lehetdségem volt, igy a szakdolgozat kivald alkalom volt ezeknek a

készségeknek a gyakorlati alkalmazésara €s elmélyitésére. (v0. 3.5.3 fejezet)

NestJS:

24

Node.js-alapt progressziv keretrendszer TypeScript tdmogatdssal, MIT licenc alatt. Az

Angular-hez hasonl6 architektarat kovet, de a C# 6koszisztéma gazdagabb volt a projekthez.
Java:

Altalanos célt, objektumorientalt nyelv. Nem vélasztottam, mert a .NET O6koszisztéma

modernebb eszkozoket (pl. LINQ, async/await) kinal.
Valasztott adatbazis technologia megoldas: PosgreSQL

»A PostgreSQL egy nyilt forraskodu, relacios adatbazis-kezelo rendszer, amelyet kozosségi
alapon fejlesztenek.” (PostgreSQL Global Development Group, 2024) Ismert stabilitasarol,
ACID-kompatibilitasarol és fejlett funkcidirdl (JSON tamogatas, full-text search).

Valasztas indoklasa:

e Ingyenes és nyilt forraskédi: Nincs licencdij
e JSON tamogatas: Hibrid adatmodell lehetdsége
o Kozosségi tamogatas: Nagy fejlesztoi kozosség

e Entity Framework Core integracio: Kivalé .NET tamogatas
Megyvizsgalt alternativak:
Microsoft SQL Server:

A microsoft SQL Server egy szabadalmaztatott relacios adabéazis-kezeld rendszer, amelyet a
Microsoft fejlesztett ki tigynevezett Structured Query Language hasznélataval. Hatranya a

licencdij, ezért nem valasztottam.
MySQL:

Egy nyilt forraskodu relacios adatbazis-kezel6 rendszer, amelyet széles korben haszndlnak
webes alkalmazasokhoz. A MySQL inkabb kisebb és kozepes méretli alkalmazasoknal, illetve
gyors fejlesztéseknél kedvelt. Nem valasztottam, mert a PostgreSQL fejlettebb funkcidkat (pl.
JSONB, window functions) biztosit.

25

3.1.2 Technologiai stack dsszefoglalasa

Készitettem egy 0sszefoglalot a technologiai stack-ek 0sszefoglalasarol (5. tablazat).

Réteg Technologia Verzio Indoklas
Frontend Angular 19.2.0 Komponens-alap,
Typescript,
személyes tapasztalat
Backend ASP.NET Core 9.0 JWT tamogatés, EF
Core
Adatbazis PostgreSQL Nyilt forraskod,
JSON tdmogatas
ORM Entity Framework | 9.0.9 Code-first
Core megkdzelités, LINQ
tamogatas
Auth JWT + Steam | - Kiilsd authentikacio
OpenlD

5. tablazat - A rendszer technologiai architekturdja és f6 komponensei — Forras: Sajat 6sszegzés

3.2 Uzemelési terv

Az lizemelési terv célja, hogy bemutassa a webalkalmazas éles kornyezetben torténd
futtatasanak technikai kovetelményeit, a telepitési folyamatot és az lizemeltetési feladatokat. A
fejezet fontos része a szakdolgozatnak, mivel megmutatja, hogy a fejlesztett rendszer valds

kornyezetben is mitkoddképes.

3.2.1 Hardver- és szoftverkdvetelmények
Szerver oldali kovetelmények:
Az ASP.NET Core backend futtatdsdhoz sziikséges kornyezet:

e Operacios rendszer: Linux (Ubuntu 22.04 LTS vagy tjabb) vagy Windows Server
2019+

26

e Processzor: Minimum 2 CPU mag (ajanlott 4 mag)
e Memoéria: Minimum 4 GB RAM (ajanlott 8 GB)
e Tarhely: 50 GB SSD (adatbazis méretétdl fliggden)
e Halézat: Minimum 100 Mbps internet kapcsolat

Adatbazis szerver kdvetelményei:
PostgreSQL adatbazishoz sziikséges eréforrasok:

e Verzio: PostgreSQL 15.x vagy ijabb
e Memoria: Minimum 2 GB dedikalt RAM
e Tarhely: Minimum 20 GB (n6vekedési lehetdséggel)

Node.js mikroszerviz kovetelményei:
A targyformatum-atalakité mikroszervizhez (lasd 3.5.4 fejezet):

e Node.js verzio: 18.x LTS vagy ujabb
e Memoria: Minimum 1 GB RAM

e Processzor: 1-2 CPU mag
Kliens oldali kovetelmények:
Az Angular frontend hasznélatahoz:

e Bongészok: Chrome 100+, Firefox 90+, Edge 100+, Safari 15+
e JavaScript: Engedélyezett és aktiv

e Internetkapcsolat: Minimum 5 Mbps (ajanlott 10 Mbps)

3.2.2 Telepités és belizemelés

A rendszer telepitése harom f6 komponens egyidejlii konfiguralasat igényli: a backend API
szerver, az adatbazis, valamint a Node.js microservice lizembe helyezését. A telepitési folyamat

alapvetd 1épései az alabbiak szerint zajlanak.
Backend API telepités

Az ASP.NET Core (v0. 3.5.3 fejezet) alkalmazés telepitéséhez eldszor a forraskdédot a VPS
szerverre kell masolni Git repository klonozasaval. A ,,dotnet publish” parancs hasznélataval a
projektet kiadasra kész build-allapotba kell helyezni, majd a ,,dotnet run” vagy systemd service

konfiguracioval ¢éles modban futtathatdé. Az alkalmazas konfiguraciés fajljaban

27

(appsettings.json) sziikséges beallitani a PostgreSQL connection string-et, JWT secret kulcsot,

valamint a Steam API kulcsot a kiilsé authentikacid mikodéséhez.
Adatbazis inicializalas

A PostgreSQL adatbazis lizembe helyezéséhez a szerveren telepitett PostgreSQL szerveren
1étre kell hozni egy 0j adatbazist dedikalt felhasznaloval. Az Entity Framework Core migration-
0k (dotnet ef database update parancs) futtatasaval az adatbazis séma automatikusan létrejon a

modell definicidk alapjan.
Node.js mikroszerviz telepités

A Node.js alapu targyformatum-atalakité mikroszerviz telepitéséhez (vo. 3.5.4 fejezet) a forras
konyvtarat szintén a szerverre kell masolni, majd az ,npm install” paranccsal telepiteni a
fliggdségeket. A szolgaltatds ,,npm start” segitségével futtathatd hattérfolyamatként. A
microservice alapértelmezetten a 3000-es porton figyel, amelyet a backend API-bdl lehet elérni

HTTP kérésekkel.
Frontend telepités

Az Angular alkalmazas (v0. 3.5.2 fejezet) build-eléséhez (ng build --configuration production)
a projekt forditott JavaScript bundle-ként keriil eldallitasra. Az igy kapott dist/ konyvtar
tartalmat egy webszerverre (pl. Nginx vagy Apache) kell feltolteni, amely statikus fajlokat
szolgal ki. Fontos, hogy a webszerver konfigurdlja az Angular routing-ot tamogat6 URL

atiranyitast, hogy a SPA navigacio megfelelden mitkodjon.

3.3 IT biztonsagi terv

3.3.1 Openld

»Az Openld egy nyilt, decentralizalt, ingyenes internetes szolgaltatas, ami lehetové teszi a
felhasznalok szamdra, hogy egyetlen digitdlis identitassal lépjenek be kiilonbozé oldalakra.
Maga a szolgaltatas az OAuth 2.0 keretrendszer az (IETF RFC 6749 and 6750)” (datatracker,
2025) specifikacidi alapjan. Az Openld szolgéltatas azért hasznos, hogy mar egy meglévd
feliileten, amelyen bejelentkezik a felhasznéld (steam), tovabbitja a bejelentkezett, authentikalt

adatokat a szerverrdl, igy melldzve az 0j bejelentkezést.

28

1. A végfelhasznald bongészon keresztil
navigal egy weboldalra vagy webes

alkalmazésba .

~

. A végfelhaszndlo a Bejelentkezés gombra
kattint, és beirja a felhasznalonevét és
jelszavat.

. Az RP (kliens) kérést kiild az OpenlD-

w

szolgdltatonak (OP).

>

Az OP hitelesiti a felhasznalot és

megszerzi az engedélyt.
. Az OP egy azonositd tokennel és altaldban ‘
eqy hozzaférési tokennel vdlaszol .

. Az RP kildhet egy hozzaférési tokent OpenlD Provider

w

=

Relying Party

tartalmazo kérést a felhasznaloi

eszkoznek.

~

. A UserInfo végpont a végfelhasznaldval

kapcsolatos jogcimeket ad vissza .

1. abra - OpenID miikodésének abrazolasa — Forras: openid.net

3.3.2 Third party login — SteamLogin

A steam mint tartalomtovabbitd és -kezeld rendszer (vo. 2.3 fejezet) ezek a tevékenységek

mellett biztosit Openld szolgaltatoi lehetdséget is (1. abra). Igy a szakdolgozatban érintett

platform haszndlatdhoz nem sziikséges ugymond fidkkezelést, szerepkezelést biztositani a

felhasznalok szdmara, hiszen maga az authentikacio és a bejelentkezés a steam altal biztositott

oldalon fog megtorténni. A bejelentkezés utan mar csak a felhasznald bejelentkezéséhez

tarsitott, generalt azonositot sziikséges tarolni és késobb felhasznalni azt 1asd az 2. 4bra ¢€s 3.

abra. A Valve vallalat a szolgaltatas hasznalataért cserébe csak annyit kér, hogy az 6 altaluk

tervezett bejelentkezési nyomogomb kertiljon felhasznalasra:

sign inthrough STEAM'
This site not assoclated with Valve Corp.

2. dbra - Steam bejelentkezo gomb UI elem - verzio 1 — Forras: Steam Web API Documentation

Sign In through

STEAM

This site not assoclated
with Valve Corp

3. abra - Steam bejelentkezé gomb Ul elem - verzio 2 — Forras: Steam Web API Documentation

3.3.3 Steam API

A Steam vallalat a fentebb felsorolt szolgaltatasok mellett, nyilt API végpontokat is biztosit a

fejlesztok szamara. Ennek hasznalatahoz mar egy meglévd steam fidkkal kell rendelkeznie a

29

https://openid.net/developers/how-connect-works/

fejlesztonek, amely segitségével megigényelheti a sajat, egyedi API kulcs azonositojat. Ennek
az azonosito hasznalataval kérdezhetd le kiillonbozoé végpontokon, kiillonbozo adatok. Az adatok

az alabbi struktiraban érkezhetnek meg a vélasziizenetekben:

e json - The output will be returned in the JSON format
e xml - Output is returned as an XML document

e vdf - Output is returned as a VDF file.

A helyes mikddéshez és az egyértelmii hasznalathoz a Steam biztosit egy fejlesztoi
dokumentéciot, amelyben példa tlizenetekkel (kiildendd és érkezd) demonstralja a nyilt, API
végpontok mikodését.

A dokumentacid az alabbi linken érhet6 el: https://steamcommunity.com/dev

3.3.4 JWT Bearer hitelesités

»A JSON Web Token (JWT) egy nyilt szabvany (RFC 7519)” (datatracker, 2025) amely egy
kompakt, URL-ben is tovabbithatdé formatumban tarol hitelesitési és jogosultsagi adatokat. A
JWT lehetdvé teszi a szerver és a kliens kozotti biztonsagos informacidcserét, ahol a token

alairassal védett, igy a hitelessége ellendrizheto.

3.4 Logikai rendszerterv

A logikai rendszertervben kifejtem, hogy a webalkalmazdsom miként terveztem meg, illetve
kifejtem azt is, hogy miért az alabbi architekturdkat valasztottam alkalmazasom elkészitéséhez.
A rendszer f6 komponenseit az ismertetéshez a legalkalmasabb, folyamatabrakat,

illusztracidkat hasznalom.

3.4.1 Adatstrukturak logikai szinten - Entitasok, attribitumok, kapcsolatok

Készitettem egy osztalydiagrammot, amely bemutatja, hogy a webalkalmazas alap entitasai
milyen kapcsolatban allnak egymadssal. Az osztadlydiagram segitségével gyorsan €s egyszeriien

szemléltethetd akar 0sszetettebb, bonyolultabb kapcsolat is.

30

https://steamcommunity.com/dev

User

Userld

Steamid

Trade URL
Username

Avatarpath
Tapasztalati pont (XP)

Last login date

Trade

1:N kapcsolat

1:M kapcsolat

¥

Id
Userld

AvatarPath

Descripfion

CreatedAt
BumpDate
Status
Deleted

UserMame

M:M kapcsolat

ltem

Id

Name
FullMame
Dbld

Img
Craftable
Tradable
Type

Effect
Quality
Quantity
Killstreak
Sheen
Defindex
Marketable
Commodity
Level

Paint

PaintDefindex

Classes
Paris

Spells

Discriminator

Userld
Commentid
1sSelling
Tradeld

Tradeltem Commentid

1:MN kapcsolat

1:N kapcsol

1:M kapcsolat

A J

Comment

Id
Tradeld
Userld

CommentData

A J

CreatedAt

ParentCommentid

31

4. abra - Osztalydiagram - f5 entitasok kozétti kapesolatok — Forrds: Sajat képernydfoto

Az entitasok kozotti kapcsolatok kulcsfontossaguak egy megbizhatd, skalazhaté adatbazis
létrehozéasaban. Silberschatz ¢és munkatarsai (2010) hangsalyozzak, hogy ,az Entitiy-
Relationship (ER) modell alapveté eszkoz az adatbazis-tervezésben, mivel lehetové teszik az
egyszerti vizualizaciot. Az ER diagrambol egyszeriien leolvashatok a reldacios séma tabldi,
attributumai és az idegen kulcsok, amelyek biztositiak a robusztus mitkodést.” (Silberchatz et

al, 2010)

3.4.2 Felhasznal6i modul

A felhasznaloi modulhoz készitett folyamatabra ismerteti a bejelentkezés — authentikacios

folyamatot a webalkalmazas és a steam platformja kozatt.

B Felhasznald Bl Steam authentikacio El OpenlD

®
|

Webalkalmazds
megnyitdsa

|

Bejelentkezés
steam platformon

Open|D azonositas

Steam fellletre vald

atiranyitas a

Nem Generalt openld
azonositd
Felhaszndloi adatok visszakildése
kitiltése L 3 Azonositds
i

Hiba jelzése a
steam szamara

Nem

Hibds authentikacio
Hibas authentikacid Jelzése
jelzése a felhasznalo

szaméra

r

A

Sikeres

i authentikacio |«
Sikeres bejelentkezés jelzése
utan felhasznaldi felilet

megjelenitése

A

5. abra - Aktivitas diagram — Authentikdcio — Forras: Sajat képernydfoto

32

A webalkalmazas regisztraciot és bejelentkezést nem kezel, nem tarol authentikacios
adatokat. A steam altal biztositott openld provider lehetdséget kihasznalva csak a sikeres
authentikaci6 utan a webalkalmazas szerver oldalon JWT token-t general (v6. 3.3.4 fejezet),

amely a kliens bongészojében eltarolésra keriil, sikeres authentikacié esetén.
Felhasznaloi fiok kezelése

Az alkalmazasba valo bejelentkezés utan a felhasznald szamara elérhetévé valik a profilom
mentiipont (v0. 3.5.2.2 fejezet), ahol személyre tudja szabni a beallitasait, illetve a profiljarol
késziilt statisztikdkat tudja megtekinteni. A statisztikdk a publikus ajanlattételek szdmarol,

aukcios ajanlatok/tranzakciok szdmabol €s a bejelentkezés szadmarol késziil.
Trade URL beallitas

A rendszer haszndlatdhoz sziikséges a Steam-en (vO. 2.3 fejezet) keresztiili elkérhetd
kereskedési link (trade URL) megadasa. A felhasznald ezt a sajat profiljdban adhatja meg,
amelyet késobb barmikor modosithat. A beallitott URL ellendrzésen megy keresztiil (formai

érvényesség), mielott eltarolasra kerililne az adatbazisban.
Tapasztalati pont (XP) és szintlépési rendszer

Az alkalmazés tartalmaz egy jatékositott tapasztalati pontrendszert, amely a felhasznalok
aktivitasat dijazza. A felhasznalo kiilonbozd interakciokért (pl. ajanlattétel, trade URL
beallitasa) pontokat (XP-t) szerezhet (v0. 3.5.3.5 fejezet), amely segitségével szintet 1éphet. A

szintlépés o célja, hogy fenntartsa a felhasznal6 szamara a motivaciot.

33

343

Check profile

Set Trade URL
User

Send item offers
(with comments)

Handle created
trades

6. abra - Felhasznaloi fiok funkciok — Forras: Sajat képernydfoto

Csere-igény modul

Csere-igény létrehozasa

A felhasznal6 csere-igényt tud meghirdetni, amelynek a modja a kdvetkezo:

1.

4.

A felhasznalo kitudja valasztani az Altala birtokolt (steam fiokban taldlhato) targyak
listajabol az eladni, meghirdetni kivant targyakat.
Ezutan a felhasznalé megadhatja, milyen tipustl vagy konkrét targyakat keres cserébe.
Ezt egy szilirhetd listan keresztiil teheti meg:

a. Targy tipusa (sapka, unusual, strange stb.)

b. Szinezés

c. Ritkasag

Opcionalisan szdveges megjegyzést is fiizhet a cseréhez (vo. 3.5.2.11 fejezet), példaul:

,,Csak hasonlo értéki festéket keresek™, ,,Unusual érdekel” stb.
Végiil a felhasznald kozzéteszi a csere-igényt, amely ezutdn megjelenik a nyilvanos

cserepiacon, ahol més felhasznaldok ajanlatot tehetnek ra (vo. 3.5.2.8 fejezet).

Csere-igény modositasa

34

A felhasznald a mar kordbban létrehozott csere-igényeit tudja kezelni egy kiilon mentiponton

beliil (vo. 3.5.2.9 fejezet). A bejegyzéseket a kovetkezd mddon allithatja at:

1. Teljes csere-igény bejegyzés torlése (a 1étrehozott bejegyzés torlésre keriil, nem lesz
tobbé publikus masok szamara)

2. A publikalt csere-igényben egy eladni kivant targyat tor6lhetiink, statuszat eladott-a
allithatjuk, megvasarolni kivant targyak modositasa, torlése, hozzaadasa

3. A meghirdetett csere-igényre érkezo ajanlatok modositasa, torlése

4. Csere-igényhez irt kommentek térlése, modositasa.
Csere-igény statusz allitasa

A csere-igény statuszanak allitdsa a felhaszndld szamara lehetdséget biztosit, hogy az altala
korabban létrehozott csere-igények statuszat dinamikusan moédositsa anélkiil, hogy azokat
véglegesen tordlné. Ez a funkcionalitds egy kapcsold (toggle) mechanizmusként mikodik,
amely lehetdvé teszi a csere-igény "aktiv" vagy "inaktiv" allapotba helyezését. Ennek az az
elénye, hogy a felhasznal6 ideiglenesen felfiiggesztheti a csere-igény bejegyzéseket, példaul,
ha atmenetileg nem szeretne 1j ajanlatokat kapni, de nem kivéanja elvesziteni a csere-igény

adatait.
Csere-igény torlése

A csere-igény torlése a felhaszndlo altal 1étrehozott csere-igény bejegyzés eltdvolitasat jelenti
a feliiletr6l. Ez a miivelet végleges, ezért a rendszer biztositja, hogy a torlés csak a bejelentkezett
¢s az adott csere-igényhez jogosultsaggal rendelkezd felhasznald szamara legyen elérhetd. Az
adatbazisbol nem kertil torlésre a rekordja, csupan az ugynevezett ,,deletedFlag” mez6 keriil

allitasra, majd idével automatikusan torlésre keriil az adatbazisbol.
Publikus csere-igény piac bongészése

A felhasznaloknak lehetdségiik van az 6sszes, nyilvanosan elérhetd csere-igény bejegyzések
kozott bongészni egy dedikalt feliileten (vo. 3.5.2.7 fejezet). A csere-igények oldalanként
keriilnek listdzasra, a megjelenitett bejegyzések szama valaszthato (10, 15 vagy 20 elem

oldalanként).
Ajanlattétel egy csere-igényre

A felhasznalonak lehetésége van ajanlatot tenni egy masik felhaszndlo altal 1étrehozott,

publikus, aktiv hirdetésen beliil. Az ajanlattétel soran csak az ajanlattevd meglévd targyai koziil

35

tud valasztani €és a kommenteléshez hasonl6 mddon, ajanlatot tehet (vo. 3.5.2.11 fejezet).

Fontos kiemelni azt, hogy a webalkalmazés kizarolag egy interaktiv platformként miikodik,
amely a Steam-fiokokhoz kapcsol6dd csere-igény hirdetések kezelését és népszeriisitését
tamogatja. A rendszer nem bonyolitja le ténylegesen a targyak cseréjét, nem kér hozzaférést a
felhasznalok targyaihoz, és nem tarol semmilyen virtualis targyat. A felhasznalok kozotti
cserefolyamat teljes mértékben a Steam hivatalos platformjain keresztiil torténik (vo. 2.3
fejezet), a webalkalmazas csupan a hirdetések kozzétételét, kereshetdségét és az ajanlattétel

lehetdségét biztositja.
Microservice komponens — targyformatum atalakitas / alapértelmezett targyak

A tf2-node alapti microservice egy dedikalt Node.js szolgaltatas, amely kifejezetten a TF2 jaték
virtualis targyainak komplex feldolgozasara lett tervezve (vo. 3.5.4 fejezet). Ennek oka, hogy a
Steam API altal szolgaltatott adatok rendkiviil részletesek és Osszetettek, rengeteg
attributummal rendelkeznek. A microservice célja, hogy ezt az Osszerendelési, formazasi,

specifikus feldolgozast levalassza a f6 backend rendszertdl, igy:

e Megtartja az ASP.NET Core backend tiszta architektirajat és konnyen kezelhetd
szolgaltatésait.

e A specifikus TF2 targylogikat egy kiilon komponens kezeli.

e Gyorsabba és hatékonyabbd teszi az adatok lekérését, mivel a tf2-node konyvtarra épiil,
amely a TF2-specifikus targyak elemzését €s konvertalasat tamogatja.

e Biztositja a TF2 jatékban szerepld targyak €s stilusokat.

3.5 Implementacio

Az el6z6 fejezetekben bemutatott tervezési dontések és architekturalis megoldasok ebben a
fejezetben kertilnek gyakorlati megvaldsitasra. Az implementacio részletezi a platform frontend
¢és backend komponenseinek konkrét technikai megvaldsitasat, a valasztott technoldgiai stack

elemeit.

3.5.1 Bevezeto

Az implementacio fejezet célja bemutatni a szakdolgozat soran fejlesztett webalapt targycsere-
platform technikai megvaldsitasat. Itt mutatom be részletesen a hasznalt technoldgiakat,
fejlesztési kornyezeteket, valamint az alkalmazas miikodésének kulcsfontossagl elemeit. Az

implementacid vizsgalata soran kitérek a frontend és backend OsszetevOkre, a biztonsagi

36

megoldasokra (v0. 3.3 fejezet), a kiils6 rendszerekhez (Steam OpenlD, Steam API) torténd
kapcsolodds modjara és a funkcionalitds gyakorlati megvalositdsara. A fejezet bemutatja,
milyen eszkozokkel és modszerekkel valosult meg a projekt terve, tovabba ramutat a fejlesztési

kihivasokra, azok megoldasaira, mikdzben utmutatoként szolgal a rendszer hasznalatat illetden.
A fejlesztés soran az alabbi fobb technologidkat alkalmaztam:

e Frontend: Angular keretrendszer (v0. 3.1.1 fejezet), amely modern, komponens alapu
struktarat ad a kliens oldali megvaldsitashoz. Angular-t véalasztottam a széles kort
tamogatas, stabilitds €s beépitett szolgaltatasok (pl. routing, formok kezelése, HTTP

kommunikécid) miatt.

e Backend: C# (vo. 3.1.1 fejezet), amely a tamogatja a modern aszinkron programozast,

¢s konnyli integraciot biztosit a JWT alapu authentikacidhoz.

o Entity Framework Core: Az adatbazis muveletekhez (pl. select, insert) hasznalt ORM

eszkOz, amely megkOdnnyiti az adatszerkezet kezelését és lekérdezéseket.

o Steam API: A Valve altal szolgaltatott nyilvanos API-k, melyek segitségével
lekérdezhetok a jatékosokhoz tartozo virtualis targyak adatai (vo. 3.3.3 fejezet).

o Steam OpenlD: Autentikacios rendszer a felhasznalok biztonsagos beazonositdsdhoz

¢s hitelesitéséhez, amely a Steam fiok hitelesitését végzi (vo. 3.3.1 fejezet).

e JWT (JSON Web Token): A kliens és a szerver kozti tovabbi hitelesitett
kommunikéci6é biztositdsara szolgald token alapi megoldas, amely megérzi a

bejelentkezett felhasznalo allapotat (vo. 3.3.4 fejezet).

o Fejlesztéi eszkozok: Visual Studio Code, Git verziokezelés, Swagger az API

tesztelésére.

Ez a technologiai kornyezet biztositja a rendszer megbizhatosagat, skaldzhatosagat ¢&s

biztonsagos miikddését.

3.5.1.1 FO6bb elemek bemutatdsa
Az ASP.NET backend fogadja a felhasznalo bejelentkezési kérelmét, majd tovabbitja a Steam
OpenlD szolgaltatasra (v6. 3.3.1 fejezet). A Steam hitelesiti a felhaszndlot, majd a valasz

alapjan a backend létrehozza vagy frissiti a felhasznaldi adatot és general egy JWT tokent. Az

alabbi vazlat bemutatja egy JWT token l1étrehozasat ASP.NET Core-ban:

37

ICconfiguration _configuration;

IConfiguration configuration

_configuration = configuration;

GeneratedwtToken(steamId)

securityKey SymmetricSecurityKey(Encoding .UTF8.GetBy (_configuration[”
credentials Signil dentials(securityKey, SecurityAlgorithms.HmacSha256);

claims =

Claim({ClaimTypes.NameIdentifier, steamId),

Claim(» steamId)

expires: De ime .UtcNow . AddHours (1),
signingCredentials: credentials

SecurityTokenHandler () .WriteToken(token);

7. abra - Authentikacios szolgaltatas — kodrészlet — Forras: Sajat implementdacio

38

3.5.1.2 Hitelesités konfigurdcio ASP.NET Core-ban

Az authentikécio hitelesités beallitasa Program.cs fajlban:

7

Uri{url).Segments.Last();
. IsNullOrEmpty(steamld))

context. Identity?.AddClaim Claim{ "s d", steamId});

return Task.CompletedTas

¥

}}.AddIwtBearer(option:

) 1 (ception.Mes
urn Task.CompletedTask;
s
OnTokenValidated = context =>
'I:

C le.Writeline

~n Task.Comple

1
I
OnChallenge = context =>

" + context.Error + " - " + context.ErrorDescription);
return Task.CompletedTask;

¥

options.TokenValidationParameters = TokenValidationParameters

ValidateIssuer =
ValidateAudience
Validatelifetime
Validatelssuersignin
ValidIs configuration[" Jwt:
configuration[™
SymmetricSecur

8. abra - Authentikacio hitelesités — kodrészlet — Forras: Sajat implementdcio

3.5.1.3 APl vezérl6k (Controllers)

A szakdolgozati projekt sordn az API vezérlok feleldsek a szerveroldali logika és a kliens
kozotti kommunikacio kezeléséért. Ezek végpontokat biztositanak, amelyekhez a kliensoldali
Angular alkalmazas kiilonb6z6 HTTP kérésekkel tud kapcsolddni. Minden 6 funkcidhoz kiilon
vezérld tartozik (pl. felhaszndloi profil (vo. 3.5.3.2 fejezet), cserék (vo. 3.5.3.6 fejezet))

39

Swagger dokumentacio hasznalata

A backend szolgaltatasaim dokumentalasara a Swagger nevi, integralt eszkozt alkalmaztam. A
Swagger automatikusan generalja a webes API dokumentaciot az ASP.NET Core projektekben.

A Swagger nagyon hasznos tud lenni:

e lehetdveé teszi a végpontok teljes kort vizualis attekintését
e Megjeleniti minden végponthoz tartozo elvart paramért, minta kérés és valaszt, illetve

kiprobalhato a feliileten.
A vezérlok példai a projekten beliil, néhany fontosabb controller:

e AuthController
Kezeli a Steam Openld bejelentkezési folyamatot, valamint a JWT token generalast.
o Valasz: Sikeres hitelesités esetén JWT token
e UserController
Felhasznaloi adatokat, profilmodositast, statisztikakat kezel
o Végpontok:
= /api/User (POST) felhasznalo 1étrehozésa
e Elvart paraméterek: steamld, tradeUrl
= /api/User/{steamld} (GET) felhasznal6 lekérdezése
e Elvart paraméterek: steamld
= /api/User/{steamld}/tradeurl (PUT) felhasznal6 csereUrl modositasa
e TradeController
A cser¢k létrehozéasat, modositasat, ajanlatok kezelését biztositja
o Végpontok:
= /api/Trade/{id} (GET) Egy csere részletes adatainak a lekérdezésére
szolgal
= /api/Trade (GET) Visszaadja a cseréket
e FElvart paraméterek: mettél, mennyit adjon vissza (oldalanként

kérdezheto le)

A kovetkezo képen lathatd a Swagger Ul fooldala, amelyen attekinthetdek a projektben elérhetd

REST végpontok és azok metodusai.

40

manncorner-backend © =

e T T e

Auth ~

o= N v |
|m i e - |
o= |
Tl s 3
= e 2
Comment R

[Cor PEEESE v
Image R

(B e 2
Items &

o= v]
(B <]
manncorner-backend R

- e 2
Steam =

|m fapi/steanfproFile {stemtd) v |
Trade =

|m fapi/Trade/ {id} - |
(B o 2
oo T —— v |
(W e g
(T e]
(R e 2
(R e 2
T ee— 2
(oo T v
User ~

(R i 2
[o= T v |
M— e 1

9. abra - Swagger dokumentacio — Forras: Sajat képernydfoto

3.5.1.4 Entity Framework Core: Cold vs Warm Start jelenség

Az Entity Framework Core cold start jelenség akkor jelentkezik, amikor az alkalmazas elsé
lekérdezése egy adott DbContext tipussal torténik. Ebben az esetben az EF Core szamos

41

hattermiiveletet végez - betdlti és validalja a modellt, metadata loading-ot hajt végre, view
generation-t futtat, majd leforditjia a LINQ kifejezéseket SQL utasitasokka és cache-eli ezeket
az informdciokat. Ez az elsé "cold" lekérdezés akar 5-10-szeresen lassabb lehet, mint a késobbi
"warm" lekérdezések, mivel azok mar a cache-elt forditasi eredményeket hasznaljak.”

(medium.com (1), 2025)

3.5.2 Frontend megvaldsitas
Az angular keretrendszert valasztottam a kliens oldal elkészitéséhez, mivel:

o Komponens alapu felépités: Konnyti Gjra felhasznalhaté komponenseket késziteni (51.
abra), ezzel egyszerisitve a fejlesztoi feladatokat

e Kétiranyu adatkovetés (data binding): Lehetové teszi a modell és a megjelenités
szoros szinkronjat

o Beépitett szolgaltatasok: Form kezelés, validacid, routing, HTTP kliens ¢€s interceptors
hasznalata gyorsitja és egységessé teszi a fejlesztést

e Typescript alap: Biztonsagosabb kodirast és konnyebb hibakeresést tesz lehetdve

Az alkalmazas felépitése kiilonb6z6 komponensekre tagolodik. A komponensek
csomopontonként keriiltek szeparalasra, tehat egy adott ,,modul” pl, authentikacidhoz tartozo
komponensen, authentikécids mappaba keriiltek tarolasra. A komponensek szolgaltatdsokon
(services) keresztiil kommunikalnak a backenddel. A routing biztositja az oldalvaltasokat és a

hozzaférési jogosultsagokat.

3.5.2.1 Felhaszndldi authentikdcio kezelése

A legeneralt JWT token szolgél a tovabbi API hivasok hitelesitésére. Az angular alkalmazéasban
a JWT eltarolasra keriilt a bongészdben siitiként és minden HTTP kéréshez automatikusan
hozzaadodik, igy biztositja a szerveroldali jogosultsagellendrzést. A kliens oldalon a JWT
kezelése egy dedikalt authentikaciods szolgaltatasban torténik, amely felelds a token tarolaséaért,
lekéréséért és torléséért. Ezzel egyiitt egy http interceptor gondoskodik réla, hogy minden API

hivas tartalmazza a megfeleld hitelesitést.

3.5.2.2 Profil megjelentése és szerkesztése

Az alfejezetben bemutatom az alkalmazas felhasznaloi profilkezelési funkcioit. Azt, hogy
hogyan jelennek meg és hogyan szerkeszthetOk a felhasznaloi adatok, kiilonos tekintettel a

Steam platformrol szarmazo Trade URL beallitasara. Bemutatom a jatékositott tapasztalati pont

42

(XP) ¢és szintlépési rendszer megjelenitését. A bejelentkezett felhasznalé megtekintheti
személyes adatait, valamint konfiguralhatja a Steam fiokjahoz kapcsolodo Trade URL-t, amely

elengedhetetlen a targycserék lebonyolitashoz.

Juhaszky's profile

Experience

Your trades (3}

10. dbra - Sajat profil nézet — Forrds: Sajdt képernydfoto
A 10. abra fejlécében megjelennek ugynevezett ,.chip” elemekben a felhasznaléi fidkhoz
tartozo egyéb, kiilsé oldalon szerepld profiladatok. Ilyen a ,,Backpack.tf”, amely egy hasonld
platform, illetve a ,,Rep.tf”, amelyen a Steam felhasznal6i fidkodhoz tartozd értékelések
jelennek meg. Az emlitett oldalakra nem sziikséges regisztralni, amennyiben valaki rendelkezik
steam fiokkal az automatikusan megfog jelenni az emlitett oldalakon. Kilistazasra keriil a
felhasznalohoz tartozd legutolsdé harom, legfrissebb csere, amely altala keriilt 1étrehozésa,
illetve a képernyd alsé részén megjelenik a Trade URL beallitasi lehetdség, egy linkkel
beagyazva, amely a Steam-es sajat profil oldaldra tovabbit minket, ahonnnan kimésolhat6 a
Steam altal legeneralt egyedi tradeUrl. Illetve a feliileten megjelenitjiik a felhasznalohoz tartozo

tapasztalati pontokat és a szintjét.

3.5.2.3 Tapasztalati pont (XP) és szintlépési rendszer megjelenitése

Az alkalmazas jatékositott elemet is tartalmaz, amely aktivitds alapjan tapasztalati pontokat

(XP)-t oszt ki a felhasznaloknak

o Az XP gylijtése az ajanlattételektol, bejelentkezésektdl és egyéb funkciok hasznalatol
figg

43

https://backpack.tf/

e A megszerzett XP alapjan a felhasznalo szintet 1€p, amely a profilon megjelenik
késobbiekben stilusokat vasarolhat beldle (vo. 6.2 fejezet)

e Szintlépés motivalja és 0sztonzi a felhasznalokat az aktiv részvételre

3.5.2.4 Csere-igény hirdetési feliilet

A csere-igény hirdetési feliilet f6 célja, hogy a bejelentkezett felhasznal6 az ,,Add trade+”
meniiponton beliil egyszertien €s attekinthetden meghirdethesse az 4ltala eladni kivant virtudlis

targyakat, valamint bedllitson egy cserét-igényt az altala keresett targyakra.
Komponensek szétbontasa

e (C¢l: Minden komponens csak egy jol koriil hatarolt feladattal foglalkozzon — példaul,
vagy csak a megjelenitéssel, vagy csak a konkrét logikai miiveletekkel.

e Ez megkonnyiti a tesztelést, és az ujra felhasznalhatosagot.
Facade pattern hasznalata

Az ,item-selector-facade” (48. abra) egy kiilon szolgaltatasként (service) miikddik, amely az
Osszetettebb logikdt egy egységes, egyszeri felilleten keresztiil kezeli.
Feladata, hogy Osszefogja azokat a miiveleteket, melyek a targyak kivalasztasdhoz
kapcsolodnak (pl. valasztott targyak tarolasa, allapot kezelése).
A facade elrejti a komplex belsé miikddést a komponensek eldl, igy azok csak a megjelenitésre
¢s interakciokra koncentralhatnak. Ez javitja az alkalmazas skalazhatosagat ¢és
karbantarthatdsagat, mert a valtoztatasok nagy része a facade-ben kezelhetd anélkiil, hogy az
Osszes komponenst modositani kellene. A kovetkezd képen bemutatom, hogy az architektura,

amelyet alkalmaztam az, hogyan néz ki a csere-igény hirdetési feliilet esetén:

44

- MANMCORNER

~ [manncomer-backend-microservice
500N n

v [3
~ [action-bar
» I search-bar
» I sort-bar
action-bar.component.html
action-bar.component.scss
action-bar.component.spec.ts
action-bar.component.is
~ [buy-item-panel
buy-item-panel.component.html
buy-item-panel.component.scss
buy-item-panel.component.spec.ts
buy-item-panel.component.ts

~ [inventory-items-selector

inventorny-items-selector.component.htmil

imventony-items- or.componentsc
inventory-items-selector.component.ts
item-panel
-item-panel.component.htmil
sell-item-panel.component.scss
sell-item-panel.component.spec
-item-panel.component.is
add-trade.component.html

add-trade.component.

B Commaon
N home
» I login-success
~ [navbar
» I mobile-nav
~ [user-data

11. abra - Komponens alapu architektura - csere hirdetési feliilet — Forras: Sajat képernydfoto

45

3.5.2.5 Grafikus felllet felépitése

12. dbra - Csere-igény hirdetési feliilet — Forrds: Sajat képernydfoto
A 12. abra bal oldaldn a ,targyak elad4dsa” doboz elembe a felhasznald altal kijeldlt, eladni
kivant targyak keriilnek, jobb oldalan ,targyak beszerzése” doboz elembe a felhasznal6 altal
kijelolt, beallitott, vasarolni kivant targyak keriilnek. A feliilet als6 részében megjelennek a
Steam végponton keresztiil lekérdezhetd, felhasznalohoz tartozod targyak. A komponens
megjelenitésekor automatikusan huszonét targy kertil lekérdezésre, a rovid valaszidé miatt. A

tobbi targy lekérdezésére az alabbi két lehetdség adott a felhasznald szamara:

o Legorgetés esetén, amennyiben a doboz, amelyben szerepelnek a targyak gorgetésre
keriil és majdnem a doboz aljara keriil a cstiszka, abban az esetben Ujabb lekérdezés
indul, amely lekérdezi a kovetkezd huszonot elemet a felhasznalé targyai koziil.

o Keresés esetén, lekérdezés torténik az alkalmazas szerveroldalatol, ahol a keresési

mezObe beirt paraméter alapjan szlir a felhasznal¢ altal birtokolt targyak koziil.

A lekérdezés szerveroldali modja egy masik fejezetben kifejtésre keriil, (vo. 3.5.3.6 fejezet). A
szlrési eredmények a 13. abra alapjan kertilnek megjelenitésre.

A felhaszndlonak lehetdsége van sziirni a lekérdezett targyai kozott az alabbi médon:

e Szoveges keresés, a felhasznalo targyai kozott szoveges modon keres
e Rendezés, felhasznaloi targyai kozott az alabbi szempontok alapjan rendez:
o Név — ABC sorrendben valo listazas

o Ritkasagi tipusok (vo. 3.1.1 fejezet)

46

Your backpack:

Strange Axtinguisher

13. abra - Sziirési eredmény — Forras: Sajat képernydfoto

»largyak eladasa” elem felépitése

Amennyiben hozzdadasra keriilt egy elem, akkor a felhasznald hatizsakjabol ideiglenesen

kivételre kertilnek a targyak, ezt a feliilet egy halvany stilussal jelzi ezt a felhaszndlo szamara,

47

lasd 14. abra.

Your backpack:

14. abra - Kivalasztott elem abrazolasa — Forras: Sajat képernydfoto
A kivalasztott elemeket a ,,targyak eladasa” dobozon beliil tordlni tudja felhasznalo (15. abra),

ilyenkor megszilinik a kijelolés €s visszakeriil a targy az eredeti helyére.

Strange Axtinguisher

15. abra - Torlés funkcio — Forras: Sajat képernydfoto

48

»largyak vasarlasa” elem felépitése

A targyak vasarlasa dobozban alapértelmezetten a targyak hozzaadasa lehetdség érheto el (16.
abra). A kliens a hattérben automatikusan lekérdezi a microserviceként hasznalt nodejs alap

szerverrdl (vO. 3.5.4 fejezet) a jatékban szerepld 0sszes targyat.

Add items...

16. dbra - Targy vasdrldsa funkcié — Forrds: Sajat képernydfoté
A felhasznalo ki tudja valasztani azokat a targyakat, amelyekre 6 nyitott, azaz, amit szeretne
kapni az eladni kivant targyaiért cserébe. Az alap targyat kell kivalasztaniuk a feliileten (17.
abra) majd ezutan lehetdségiik van a targy modositasara, tipus, szinez€k, hatas kivalasztasara
is (19. abra). Teljesen személyre szabhatdak a targyak és pontosan meghatarozhat6 az a targy,

amelyet a felhasznalo szeretne vasarolni.

49

17. abra - Alapértelmezett targy keresé feliilet — Forras: Sajat képernydfoto
A kivalasztott targyak megjelennek egy listat nézetben is, ahol lehet6ségiik van a targyak

modositasara vagy torlésére, elemenként (18. dbra).

Customize ltem

Bat, Bottle

18. abra - Targyak listas nézete — Forras: Sajat képernydfoto

A modositani kivant targyakon a kdvetkezd beallitasok érhetdek el:

e Ritkasagi tipus
e Hatas

e killstreak”

50

@

Unusual Bottle

Quality

Killstreak

19. abra - Targy személyre szabasa — Forras: Sajat képernydfoto
A konfigurécios feliileten az alabbi tulajdonsagokat allithatja be a felhaszndl6 a kivalasztott

targyra:

e Quality — tipus
e [Effects — hatasok
o Killstreak

Mindegyik tulajdonsag-valasztd6 meniipont egy ugynevezett ,accordion-panel” -ben

helyezkedik el, ezt lenyitva érheti el a felhasznalo a kivalaszthato értékeket (20. 4bra).

51

Bruised Purple Footprints Corpse Gray Footprints

Gangreen Footprints Headless Horseshoes

Rotten Orange Footprints Team Spirit Footprints

Violent Violet Footprints Team Spirit Footprints

Violent Violet Footprints Chromatic Corruption Die Job

Putrescent Pigmentation Sinister Staining

Spectral Spectrum Scout's Spectral Snarl

20. abra - Varazslatok valaszto feliilet — Forras: Sajat képernydfoto

A személyre szabott targy elmentésre keriil a ,,Modify” gomb megnyomasakor. Ezutdn

megjelenik a feliileten a Iétrehozott targy (21. 4bra).

52

Make Trade

Your backpack:

21. abra - Egyszerii csere-igény bemutatdsa — Forras: Sajat képernydfoto
Validacio
Egy csere-igény létrehozasanal az alabbi szabalyoknak kell érvényesiilniiik:
e Legaldbb egy eladni kivant targyat sziikséges kivalasztani

e Legalabb egy vasarolni kivant targyat sziikséges kivalasztani

e Tipusonként maximum tiz targy valaszthatd

A szabalyok megsértésérdl a felhasznalo figyelmeztetést kap a rendszertdl (22. abra), amelyért

az alkalmazasban talalhaté primeng konyvtarban szerepld tizenet szolgaltato osztaly felel.

You must select one item from each category!

22. abra - Figyelmezteto iizenet — Forras: Sajat képernydfoto

53

3.5.2.6 Csere-igény keresési feliilet

A csere keresési feliilet nagyon hasonld a korabban leirt csere-igény hirdetési feliilettel (vo.
3.5.2.5 fejezet). A feliileten megjelend komponensek és a haszndlat megegyezik, azonban a
megjelenitett targyak forrasa mas. A feliilleten minden esetben a jatékban fellelhetd Osszes,
alapértelmezett targy megjelenik és a felhasznalo ezek koziil véalasztva, egyedileg konfiguralva
tudja megkeresni az altala beallitott csere-igényt/csere-igényeket (23. abra). A nagyobb

teljesitmény érdekében az oldal betoltésekor csak az els6 otven targy keriil lekérdezésre, majd

a tovabbi gorgetés vagy sziirés alapjan a tobbi targy is.

23. abra - Csere-igény keresési feliilet — Forrds: Sajat képernydfoto
Validacio

A keresési feliilet validacigja teljesmértékben megegyezik a korabban részletezett, csere

hirdetési feliileten szerepld logikaval. (v0. 3.5.2.4 fejezet)

3.5.2.7 Keresési eredmények

A keresési talalatokat a felhasznald altal megadott keresési paraméterek alapjan jeleniti meg a
feliilet. Amennyiben a felhasznal6 kivalasztott egy elad6 targyat, azaz a (23. abra) bal oldalara
kertilt felvételre, akkor abban az esetben az alkalmazas azokat a keresési eredményeket fogja
visszaadni, ahol a felhasznalok szintén elado targyként jelolték meg az adott targyat. A
részletesebb keresési logika a szerveroldali megoldasoknal kertil kifejtésre, az alabbi fejezetben
(v0. 3.5.3.6 fejezet). A keresési eredményeket (24. dbra) az alkalmazas az aldbbi elérési

utvonalon jeleniti meg: ,,/results”

54

Juhaszky wants to rade... (Long time ago...)

Juhaszky wants to trade... (Long time ago...)

»

24. dbra - Keresési eredmények feliilet — Forrds: Sajét képernydfoté
A megjelenitett keresési eredmények kozott a felhasznalonak lehetdsége van a lapozasra.
Alapértelmezetten tiz eredmény keriil megjelenitésre. A skaldzhato és modern szerveroldali
megoldasnak kdszonhetden a keresési sebesség tobb felhasznald esetében is gyors (<30 ms) és
optimalizalt. Szakdolgozatom soran fokozottan figyeltem arra, hogy az alkalmazdsom minél
gyorsabb és a lehetd legkevesebb erdforrast vigyék el egy-egy lekérdezések. Ezért ugynevezett
stress-test-nek tettem ki az alkalmazdsomat és néhany fobb funkcié mogotti szerver és kliens
oldalt teszteltem. A tesztelési eredményeket, amelyek a keresési funkcidohoz kapcsolodnak, az

alabbi fejezetben keriil kifejtésre (v0. 3.6.3 fejezet).

3.5.2.8 Csere-igény kezel6 feliilet

A csere-igény kezel0 feliileten (25. dbra) az aktualis bejelentkezett felhasznalo altal 1étrehozott
cserék jelennek meg lista-nézet formatumban. Jelen alfejezetben kifejtett feliileten a felhasznalo

az alabbi interakciokat hajhatja végre:

o Csere-igény frissitése: a frissitési datumot allitja 4t a frissités gomb megnyomas
idejére, ezzel a felhasznalo csere-igénye elore keriil a listdzasban.

o Csere-igény torlése: A felhasznalo véglegesen tordlni tudja a csere-igényét, ez a
miivelet végleges, igy ez a milivelet fokozott figyelemmel hajthat6 csak végre.

o Csere-igény moddositasa: A kordbban Iétrehozott csere-igényt moddositani lehet,
targyakat torolhetiink, inaktivva tehetiink, illetve, akar teljesen modosithatjuk is azt, a

meglévé kommentek és ajanlatok meghagyasaval!

55

o Csere-igény statusz allitasa: Lehetdséget nyujt a meglévd csere-igények
felfiiggesztésére. Ilyen esetben a csere-igény nem keriil torlése, viszont nem is fog

megjelenni masok szamara sem.

A felsorolt miiveletek (frissités, torlés, modositas, felfliggesztés) kizardlag bejelentkezett és
hitelesitett felhasznalok szamara érhetok el, igy biztositva, hogy csak a sajat csere-igény
ajanlatok kezelhet6k. Ez megakadalyozza, hogy mas felhasznalok jogosulatlanul modositsak,
toroljék vagy allitsak at mésok altal 1étrehozott csere-igényeket. Az ilyen védelem az adatok és
a felhasznalodi fiokok biztonsaga érdekében elengedhetetlen, és minden miivelet végrehajtasa

szigoruan a felhasznal6 azonositasahoz kotott.

Your trades (10 - inactives (0))

25. abra - Csere-igény kezeld feliilet — Forrads.: Sajat képernydfoto

3.5.2.9 Csere-igény modositdsi feliilet

A bejelentkezett felhasznald a csere-igény kezelési feliileten kitudja valasztani a mar kordbban
létrehozott csere-igény modositasat. Ebben az esetben az alkalmazas a felhasznalot atiranyitja
egy masik feliiletre, ahol betoltésre keriil a kivalasztott, modositani kivant csere-igény targyai.
A feliilet miikodése megegyezik a csere-igény hirdetési feliilettel (v6. 3.5.2.4 fejezet), azzal a
kiilonbséggel, hogy ebben az esetben a csere-igény nem ujként jon létre, hanem a meglévo
csere-igény kerlil modositasra. Illetve amennyiben az utolsé datum frissités oOta eltelt 6t perc,
abban az esetben a csere-igény modositasakor a datum frissités is megtorténik, tehat a

legfrissebb csere-igények kozott fog megjelenni a modositott csere-igény.

56

Juhaszky

Your backpack:

26. abra - Csere-igény modositasi feliilet — Forras: Sajat képernydfoto
A modositas tényérdl a primeng konyvtarban implementalt {izenet szolgaltatas osztaly jelzi a

felhasznalonak (27. abra).

Dashboard Add trade

Your trades (10 - inactives (0))

Trade updated successfully

27. abra - Sikeres csere modositas iizenet — Forrdas: Sajat képernydfoto

3.5.2.10 Komment és Ajdnlattétel feliilet

A felhasznélok ajanlatot tehetnek mas felhaszndlok altal 1étrehozott csere-igényekre komment
formajaban (28. abra). Amikor egy felhasznalé megnyit egy masik felhasznal6 altal 1étrehozott
cserét, lehetdséget kap komment irasara és targyak felajanlasara. A feliilet két fiil (tab) koré

épiil:
e Comments (Kommentek) fiil: Szoveges komment megirasara szolgal

57

e [tems (Targyak) fiil: Konkrét Steam-targyak kivalasztasara és felajanlasara szolgal

Kommentek fiil funkcioi

Comments (0) Items (0)

Write your thoughts here..

28. dbra - Kommentek feliilet — Forrds: Sajat képernydfoto
A kommentek fiil aktiv allapotat mutatja. A feliileten (28. dbra) egy szovegmezd talalhato, ahol
a felhasznald megirhatja ajanlatat vagy észrevételét. A zold "Make offer" (Ajanlat kiildése)
gomb segitségével rogzitheté a komment. A feliilet bal felsé sarkdban két navigacios elem

talalhato:

e "Comments (0)": A kommentek fiil, aktiv dllapotban z6ld szinnel kiemelve

o "[tems (0)": A targyak fiil, zarojelben a kivalasztott targyak szama (jelen esetben 0)
Targyak fiil funkcioi

Amennyiben a targyak fiil aktiv (29. dbra) abban az esetben a megszokott modon (vo. 3.5.2.5
fejezet) lekérdezi az alkalmazas a felhaszndl6 steam platformon birtokolt targyait. Ezek koziil
kivalasztva a kommenthez menti a rendszer a targyakat és a komment rogzitésekor megjeleniti
a kommenthez a targyakat, igy lehet konkrét targyakat felajdnlani mas felhasznéalok altal

1étrehozott csere-igényekhez.

58

Comments (0) Items (0)

Your backpack:

29. abra - Ajanlatadds - targy valaszto feliilet — Forras: Sajat képernydfoto

3.5.3 Backend megvalositas

Az alkalmazas backend részét az ASP.NET Core keretrendszerrel valositottam meg C#

nyelven, mert:

e Modern és skalazhaté keretrendszer: Lehetdvé teszi az aszinkron miiveletek
hatékony kezelését €s nagy teljesitményli RESTful API-k fejlesztését.

o Beépitett tamogatas az authentikaciohoz: Konnyedén integralhat6é a Steam OpenlD
hitelesités, valamint a JSON Web Token (JWT) alapu stateless authentikécio, amely
biztonsagos kliens-szerver kommunikaciot biztosit.

e Entity Framework Core hasznalata: Az ORM eldsegiti az adatbazis miiveletek
egyszeri kezelését, az adatok lekérdezését és modositasat objektum-orientalt modon.

e Konnyen dokumentalhato API: A Swagger eszkoz segitségével automatikusan
generalt dokumentacid teszi atlathatova és tesztelhetdvé a backend végpontokat
fejlesztés €s integracid soran.

e Microservice architektira tamogatasa: A TF2-specifikus tizleti logika elkiilonitése
kiilon Node.js alapt microservice-re noveli a rendszer modularis felépitését és
karbantarthatdsagat.

A backend logikai egységei jol elkiiloniilt controller-ekbdl allnak, példaul: authentikacioért

felelos AuthController, felhasznaloéi adatokat kezeld UserController, valamint a cserék

59

crer

¢s implementalja a szakdolgozat soran bemutatott (4. 4dbra) entitds kapcsolatokat. Az API
végpontok szigoru jogosultsagkezelés mellett mitkkddnek: az authentikacidt kdvetden a kliens
oldalrol érkezo kérések a JWT token ellendrzésével biztositottak. Az adatok tovabbitasa JSON
formatumban torténik, ami eldsegiti a konnyli kommunikéciot az Angular frontend és a backend
kozott. A backend moduldris és jol atlathato felépitése eldsegiti a tovabbi fejlesztéseket €s a

tesztelést (vo. 3.6.3 fejezet).

3.5.3.1 Szerveroldali authentikdcio kezelése

A webalkalmazas szerveroldali authentikdciojat a Steam OpenlD (v6. 3.3.1 fejezet) protokollra
épitve valdsitottam meg ASP.NET Core kornyezetben. A Steam kozosségi fiokkal torténd
bejelentkezés lehetdvé teszi, hogy a felhasznalok egyszertien, kiilsé hitelesitd rendszer
segitségével azonositsak magukat (8. abra), igy a platform nem tarol sajat jelszavakat vagy
privat belépési adatokat. A bejelentkezési folyamat (5. dbra) soran a felhaszndlo egy OpenlD-
atiranyitassal a Steam hivatalos authentikacios feliiletére keriil, ahonnan sikeres hitelesités utan
visszairdnyitds torténik az alkalmazésba, kliens feliiletére. Ekkor a backend begylijt néhany
altalanos, publikus adatot a bejelentkezett felhasznald steam fiokjardl. Példaul: profilnév,
profilkép, profilazonosité ¢és uj felhasznaldéi rekordként mentésre keriil az adatbazisba.
A sikeres authentikaciéo utan (7. abra) a backend szerver egy JSON Web Token (JWT)
hozzaférési tokent general (vo. 3.3.4 fejezet), melyet HttpOnly siitiként helyez el a felhasznald
bongészdjében (30. abra). Ez a token igazolja a felhasznaloi statuszt a szerver felé, amikor
tovabbi védett API végpontok elérésére kertil sor. Emellett egy frissitd (refresh) token kertil
generalasra, amely biztonsdgosan hosszabbitja meg az authentikécio élettartamat anélkiil, hogy
a felhasznalonak tUjra be kellene jelentkeznie. Ez a felépités megfelel a modern biztonsagi
elvarasoknak: az érzékeny adatok csak szerveroldalon vannak kezelve, a siitik HttpOnly
megoldast haszndlnak (igy JavaScript-bdl nem hozzaférhetok), amivel csokken a Cross-site
Scripting vagy token-lopas esélye. A Steam OpenlD integracié (vo. 3.3.1 fejezet) emellett

nagyfoku felhasznéloi kényelmet és adatvédelmet biztosit.

60

t Login

properties = Authent

RedirectUri = Url.Action("

n Challenge(properties,

» SteamResponse()

tpContext . AuthenticateAsync(”

return BadReguest("Au

claims = result.Principal.Claims;

entifier)?.Value

[@].personaname, externalData.response.play: 8] .avatarmedium);

Expires =

frontendurl =
n Redirect(frontendUr

30. abra - Szerveroldali authentikacio — kodrészlet — Forras: Sajat implementacio

3.5.3.2 Profilkezelés

A szerveroldali profilkezelést a UserController ¢s a UserService osztalyok valdsitjadk meg,

amelyek egyiittmiikodve biztositjak a felhaszndloi adatok kezelését (6. abra) és a Steam API

integraciojat.

User ~
/api/User v
JapifUser/{steamId} c ~
/api/User/{steamId}/tradeurl v

31. abra - Swagger dokumentdcio — profilkezelés — Forras: Sajat képernydfoto
A (31. abra) mutatja be, hogy milyen API végpontok keriiltek implementalasra a felhasznaloi

kezeléssel kapcsolatban.

61

3.5.3.3 Felhaszndlo létrehozdsa

A CreateUser endpoint fogadja a felhasznald Steam ID-jat és a Trade URL-jét. A controller
elso 1épésként lekérdezi a Steam API-bol a felhasznald publikus adatait (név, profilkép), majd
ezeket az adatokat elmenti az alkalmazas az adatbazisba. Ez a folyamat biztositja. hogy a

platform mindig friss és hiteles adatokkal dolgozzon.

3.5.3.4 Trade URL frissitése

A SetTradeUrl endpoint kiilonos figyelmet érdemel, mivel két szintii authentikéciot és
authorizaciot valosit meg. El0szor ellenérzi a JWT tokent, majd biztositja, hogy a felhasznalo
csak a sajat Trade URL-jét modosithassa (token-ben 1évo steamld egyezik-e a kérésben
szereplovel). Ha a felhasznalo eldszor allitja be a Trade URL-jét, a rendszer automatikusan 25
tapasztalati pontot jutalmaz az ExpService segitségével, 0sztondzve ezzel a platform teljes korii

hasznalatat.

3.5.3.5 Tapasztalati pont (XP) és szintlépési rendszer implementdldsa

Az ExpService osztily felelds a felhasznalok tapasztalati pontjainak kezeléséért. Az
increaseExp() metodus kap egy pontmennyiséget és egy Steam ID-t, majd a UserService
segitségével lekérdezi a felhasznalot és noveli az XP értékét. Ez a jatékositott elem motivalja a
felhasznalokat a platform aktiv hasznalatara kiilonboz6 tevékenységek elvégzésével (pl. Trade
URL bedllitas, csere létrehozas, kommentelés). A service dependency injection-nel van
csatolva a UserService-hez, igy Ujrafelhaszndlja annak lekérdezési logikajat, kovetve a DRY

(Don't Repeat Yourself) elvet.

3.5.3.6 Csere szolgdltatds implementdlasa

A TradeService és TradeController implementalja a platform kozponti iizleti logikajat, amely a
csere-igény hirdetések teljes életciklusat kezeli. A szolgaltatas réteg dependency injection elvén
keresztiil kap AppDbContext és ILoggerService példanyokat. A CRUD miiveletek kozott
szerepel a csere-igény létrehozasa (CreateTradeAsync), amely automatikusan beéllitja a
létrehozasi idépontot €s a kezdeti bump datumot. A lapozasi logika OFFSET-alapu pagination-
nel (Skip, Take) valosul meg, amely 10-100 darab elem kozotti oldalméreteket tamogat és
visszaadja a teljes taldlati szdmot, oldalszamot és az aktualis adatokat. A komplex keresési
funkci6 (SearchTradesAsync) dinamikus LINQ query builder-t alkalmaz, amely lehetévé teszi
tobbféle sziirési feltétel egylittes alkalmazadsat - defindex, effect, paint, killstreak, sheen

paraméterek alapjan. Az authorizdcié JWT Bearer token alapu hitelesitést hasznal a védett

62

miuveleteknél - létrehozas, modositas, torlés, bump és statusz valtas. A bump mechanizmus
iddkorlatot alkalmaz - egy hirdetés csak 5 percenként "bump'"-olhato fel, amely frissiti a
BumpDate értéket ¢és ezaltal a hirdetést a lista elejére helyezi az OrderByDescending(t =>

t.BumpDate) rendezés miatt.

3.5.3.7 Képek optimalizaldsa

A platform teljesitményének egyik kritikus eleme a képoptimalizalds, mivel minden Team
Fortress 2 targy rendelkezik Steam-rdl szarmazé képpel, amelyek nagy felbontasban és PNG
formatumban érkeznek. Az ImageService és ImageController ezt a problémat oldja meg on-
the-fly konverzidoval, amely a Steam képeket WebP formatumra alakitja at. A
SixLabors.ImageSharp library hasznalataval a szolgaltatas el6szor HT TP kéréssel letolti a képet
a Steam szerverrdl, majd memoriaban betolti és feldolgozza. Az optimalizalasi 1épések kozott
szerepel a 128x128 pixel-es atméretezés, amely egységes megjelenitési méretet biztosit a
targylistakban, valamint a WebP formatumra konvertalas 75%-os mindséggel, amely jelentdsen

csOkkenti a fajlméretet a vizualis mindség minimalis romlasa mellett.

3.5.3.8 Naplozdsi szolgadltatds

A backend alkalmazas kozponti naplézasi infrastrukturdja a Serilog library-re épiil, amely
strukturalt és szintek szerint kategorizalt log bejegyzéseket tesz lehetévé. A LoggerService
wrapper osztaly az ILoggerService interface-t implementalja, amely harom 6 napl6zasi szintet
biztosit: Information, Warning és Error. A konfiguracids beallitdsok a program.cs-ben keriiltek
bedllitasra. A beallitasok lehetdvé teszik azt, hogy a logolasi szolgéltatas elkiiloniilve napi
bontasban hozzon létre 1) log fajlokat (app-YYYY-MM-DD.log) formdtumban a Logs

konyvtarban. Ezzel biztositva a hosszitavi miikodést.

3.5.4 Microservice szerver oldal megvalositas

Kiilon microservice komponensként kertilt kialakitasra, amely egy nodejs alapt szerver. Célja
az, hogy egy publikus konyvtar felhasznalasaval a legoptimalisabb és a leggyorsabb modon,
altalanos sémat alakitson ki a kiilonb6zé team fortress 2 targyakbol és a hozzatartozo
tulajdonsagokbodl. Az alabbi okok miatt keriilt kialakitasra, kiilon microservice komponensként

a rendszer ezen része:

e Generalizalt adatmodell kialakitasa: A tf2-node segitségével az egyedi TF2
targyakbol és tulajdonsdgokbol egy egységes, optimalizalt sémat épit fel, amely

eldsegiti a gyors és hatékony adatfeldolgozast.

63

Teljesitmény és skalazhatésag: A kiilonallo microservice architektura lehetove teszi a
backend fokuszalt fejlesztését és skalazasat a TF2 targyak kezelésére, anélkiil, hogy a
6 alkalmazas teljesitményét befolyasolna.

Publikus konyvtar hasznalata: A tf2-node (https://github.com/Nicklason/node-tf2-
item-format) kihasznélja a TF2 kozosség altal 1étrehozott megbizhatd és naprakész
adatokat, valamint segit a targyak részletes jellemzdinek feldolgozasaban (pl. mindség,
effektek, sapkak).

Funkcionalis modulok: A szerver moduléaris felépitésli, tdmogatja a gyors
lekérdezéseket, sziiréseket, kereséseket és a targyakhoz kapcsoldédd metaadatok

kezelését.

Miiszaki megvaldsitas

A targyfeldolgozé komponens nodejs kornyezetben fut, Express.js keretrendszerrel. A tf2-node
konyvtar biztositja a TF2-specifikus targyak és tulajdonsagok feldolgozasat és kezelését. Az
adatfeldolgozas REST API-kon keresztiil érheté el a backend szerveren keresztiil. gy
kimondhatd az, hogy az alkalmazas kliens oldali része csak az ASP.NET alapu szerverrel
kommunikal ezzel kiillonvalasztva az alkalmazas targyfeldolgozo részét. A node.js microservice

rétegelt architektirat kovet (31. dbra), amely harom 6 rétegre osztja a komponenst:

Routing réteg: Express.js router segitségével definialja a http végpontokat.

Controller réteg: Uzleti logikat valésit meg (formatum-talakitas, validacio,
hibakezelés)

Model réteg: Adatstruktarat és tipusdefiniciot tartalmaz

64

~ [manncormer-backend-microservice
> IR
~ [mp controllers
EffectController.ts
temController.ts
PaintController.ts
SpellController.ts
~ B8 models
tem.ts
Ti2Item.ts
> B

routes

.gitignore

(= package-lockjson

(5 packagejson

tsconfig.json

32. dbra - microservice architektiura — Forrds: Sajat képernydfoto

3.6 A rendszer tesztelése

Ebben a fejezetben bemutatom a fejlesztett webalkalmazas tesztelésének folyamatat,
modszereit, valamint a tapasztalatokat és eredményeket. A rendszer megbizhatosaganak

biztositdsa érdekében tobb szinten végeztem tesztelést:

e Egységtesztek a backend kritikus funkcidira

e [Egységtesztek a kliens funkcioira

e Kliens oldali kézi tesztelés

o Integracios teszteket az adatbazis és az API végpontok helyes egylittmitkddésére

o Kézi tesztelést Swagger (9. abra) és Postman segitségével a teljes folyamatok

ellendrzésére

A cél az volt, hogy minél kordbban észlelhessem az esetleges hibakat, valamint biztositsam az

egyes komponensek ¢s a teljes rendszer stabil miikodését.

65

3.6.1 Kliensoldali tesztelés modszertana és megvaldsitasa

A kliensoldali tesztelés célja, hogy biztositsuk az Angular alapti webalkalmazas helyes, stabil
¢s felhasznalobarat mukodését. A gyorsan valtozd front-end fejlesztési kornyezetben
elengedhetetlen a funkcionalis hibak korai felismerése, a regresszids hibak elkeriilése és a
felhaszndloi ¢élmény mindségének fenntartdsa. A teszteléssel minimalizalhatd a hibak éles
rendszerbe keriilése, és lehetdség nyilik a karbantarthatosag novelésére. Az Angular

projektekben jellemzden két fO tesztelési szintet kiilonitiink el:

1. Egységtesztelés (Unit Testing): Az egyes komponensek, szolgéltatasok, pipe-ok,
direktivak viselkedésének izolalt tesztelése.
2. Integréacios tesztelés (Integration Testing): Tobb komponens egyiittmiikodésének,

adatok atadasanak és felhasznaloi folyamatoknak a tesztelése.

Mindkét tipus Jasmine tesztkeretrendszert és Karma futtatokornyezetet hasznal Angular CLI
projektekben. Az angular projektben alapértelmezetten tadmogatott a Jasmine tesztelési
keretrendszer és a Karma futtat6. Az emlitett technologidk segitségével az ,,ng test” parancs
automatikusan elinditja a teszteseteket az adott projekten beliil. Tovabba az ,,ng test —main -fajl
elérési utvonala (projekten beliil)” lehetdségiink van egy-egy komponenshez tartozo teszteket
futtatni (33. 4bra). Példa egy szolgaltatds — authentikdcidés szolgaltatds tesztelésére:

(authService):

66

describe(" Av

service:. Al

s

localStorage.setTtem(' jwtToken®, 'n
expect(service.checkAuth()).toBeTrue(

it("should be ed', () {
expect(service).toBeTruthy();
O F

33. dbra - Authentikacio teszteset — kodrészlet — Forras: Sajat implementdcio
Az ,ng test” parancs futtatisat kovetden lefutnak a webalkalmazasban talalt és
alapértelmezetten konfiguralt Jasmine fajlok. A tesztesetek eredményei automatikusan

megnyilnak egy 0j bongészd ablakban (34. 4bra).

67

@ localhost:987

A Chrome-ot automatizilt tesztszoftverek irdnyitjak.

Karma v 6.4.2 - connected; test: complete; DEBUG
Chrome 135.0.0.0 (Windows 10) is idle

@uasmine .

3 specs, 0 failures, randomized with seed 76545

Authservice
= should be created
= Should return Talse when no token is present
= Should return true when token is present

34. dbra - Sikeres teszteset abrazolasa — Forrads: Sajat képernydfoto
Az eredményben latszodnak a megirt tesztesetek végkimenetelei, illetve, az elvart eredmények.

A példa kedvéért csatolok egy hibds teszteredményt is (35. abra).

L !-‘ Karma

® localhost:9876/

A Chrome-ot automatizilt tesztszoftverek irdnyitjak.

Karma v 6.4.2 - connected; test: complete; DEBUG
Chrome 135.0.0.0 (Windows 10) is idle

@Jasmine +e:

e

3 specs, 1 failure, randomized with seed 96952

Spec List | Failures

Authservice = Should return true when token is present

Expected true to be false.
at <Jasminex
at UserContext.apply (http://localhost:9876/_karma_webpack_/webpack
[http:,
at ProxyZoneSpec.onInvoke (http

.Js:369:28)
js/fesm201s /zone-testing. js:2082: 23)

at _ZoneDelegate. invoke ocalhost: 9876/_karma_webpack_,

/localhost: 9876,/ _karma_webpack_/webpack: /node_modul

at _ZoneDelegate. invoke (http://localhost:9876/_karma_webpack_/webpack: /node_modules/

35. dbra - sikertelen teszteset dbrazolasa — Forras: Sajat képernydfoto

Egységtesztek (Unit tests)

Az egyes komponensek és szolgaltatasok viselkedését, metddusait teszteltem elszigetelten.

68

A guard mint funkci6 az angular keretrendszer része, amely az ,,angular/router” interfészen
keriilt megvaldsitasra. A guard 1ényege, hogy a navigacié soran — még az adott komponens
betdltése elétt — ellendrzi, hogy a felhasznald jogosult-e az adott oldal megtekintésére.
Amennyiben a guardban definialt feltételek teljesiilnek, a true értékkel tér vissza, €s a navigacio
folytatodik. EllenkezO esetben false értéket ad vissza, vagy programozott moédon masik
utvonalra irdnyitja a felhasznalot (példaul bejelentkezési oldalra). Amennyiben a guard-ban
talalhato feltételek mindegyike teljesiil, akkor ,.true” értékkel tér vissza, azaz elérhetd a keresett

elérési utvonal.
DOM-alapu tesztelés

A komponensek megjelenitését, az interaktiv elemeket (gombnyomas, input mezdk)

ellendriztem.
Kézi tesztelés

A bongészében, valodi felhasznaloi interakcidkkal is kiprobaltam az alkalmazast. Célom az
volt, hogy a felhasznaloi élményt biztositod réteg stabilan, gyorsan és hibamentesen miikddjon

kiilonféle helyzetekben.

3.6.2 Szerveroldali tesztelés modszertana és megvalositasa
Egységtesztek — szerveroldali funkciok tesztelése

Egységteszteket a backend iizleti logikdjara (pl. felhasznald azonositds, csere létrehozésa)

készitettem. Hasznalt technologiak:
e xUnit keretrendszer
e Moq konyvtar a fliggdségek mock-olasahoz

Példa:

A felhasznal6i authentikacio soran ellendriztem, hogy helyes token generalddik-e. Csere-igény

létrehozasanal ellendriztem, hogy valid bemenet esetén helyes adatok irddnak az adatbazisba.
3.6.3 Teljesitmény- és skaldzhatosagi tesztelés

A rendszer megbizhatd mitkddésének biztositasa érdekében teljesitménytesztelést végeztem,
amely sordn szimuldlt terhelést alkalmaztam a rendszerre. A tesztelés célja annak

meghatarozasa volt, hogy a platform képes-e kezelni a valds lizemeltetés soran varhaté nagyobb

(kiiszobértek: 400 000 csere-igény, ~4 000 000 targy) adatmennyiséget. A keresési, szlirési €s

69

lapozasi funkciok teljesitményét kiilon vizsgaltam. A mérési eredmények szerint a valaszidd az

adatmennyiség novekedésével az alabbiak szerint valtozik (kritikus kiiszob: 400,000 csere-

igény)
Funkcio Valaszidé (10,000 | Valaszidé (400,000) | Novekedés (%)
elem) elem
Keresés 5 ms 15 ms +200%
Szurés 3 ms 7 ms +133%
Lapozas 6 ms 240 ms +3900%

6. tablazat - Teljesitménytesztek valaszidejei kiilonbozo funkciok esetén (10 000 vs. 400 000 elem) — Forrds: Sajat mérés
A fenti eredményekbdl 1athato (6. tablazat), hogy a keresési és szlirési funkciok valaszideje nem

romlik kritikus mértékben (gyakorlatban <20 ms), mig a lapozasnal exponencialis ndvekedés

tapasztalhato (<250 ms).
Tesztkornyezet és modszertan
A teljesitménytesztelést fejlesztoi kornyezetben végeztem a kovetkezd specifikaciokkal:

e Adatbazis: PostgreSQL 17.0
e Backend: ASP.NET Core 9.0
e Hardver: Intel Core 17, 32 GB RAM, SSD tarhely
o Teszt adatmennyiség:
o csere-igény rekordok

o targy rekordok
Adatok generalasa

A teszt adatmennyiség adathalmaz generalast egy automatizalt script segitségével végeztem,

amely véletlenszerti, de valosaghti adatokat hozott 1étre:

o Csere-igények
e Targyak

e Iddbelyegek (elmult 30 napban szétoszlatva)
Tesztelt funkciok és mért eredmények

70

1. Keresési funkcio teljesitménye:
a. Egyszerl targy keresés
b. Osszetett sziirés (spell, paint, ritkasagi szint kombinalva)
2. Lapozasi teljesitmény:
a. Elso oldal betoltési ideje
b. Ko6zEépso oldalak betdltési ideje
c. Utolsoé oldal betdltési ideje
3. Adatbazis lekérdezések
a. SELECT lekérdezések valaszideje
b. JOIN miiveletek teljesitménye
c. INDEX hatékonysaga

Teljesitményteszt eredményei:
Cold Start vs Warm State teljesitmény

A teljesitményteszt soran az elso lekérdezés jelentdsen lassabb volt (~1500 ms), mint a késdbbi,
azonos jellegli lekérdezések (30-75 ms). Ez az un. “cold start” hatds miatt torténik, amely soran
a rendszer inicializalja a sziikséges eréforrasokat (vo. 3.5.1.4 fejezet) (pl. rejtett cache épités,
adatbazis kapcsolatok felépitése stb.). A szakmai gyakorlatban az elsé lekérdezés idejét nem
tekintjiik relevans referenciaértéknek (“kiiszobérték nélkiili mérés”), mivel normal, €les
iizemeltetés soran a hattérrendszer szinte folyamatosan ,,warm state” allapotban van, és a
felhasznalok tilnyomo része nem talalkozik a cold start lassuldsaval. A sikeres valaszidOket
emiatt a tovabbi, “warm state” -ben végrehajtott lekérdezések alapjan kell értékelni (7.

tablazat).

71

Funkcié 1. futtatas (ms) | 2. futtatas (ms) | 3. futtatas (ms) | Atlag (2-10.)
ms

GetTrades (1. | 841 19 8 7

oldal)

GetTrades (50. | 890 28 8 7

oldal)

SearchTrades 1000 50 7 6

7. tablazat - Rendszer valaszidok eltérései kiilonbozo futtatasok soran (ms) — Forras: Sajat mérés

A jelenség okai:

1. Entity Framework Query Compilation: ,,4z elso lekérdezésnél az EF Core leforditja

a LINQ kifejezést SOL utasitasokka és létrehozza a lekérdezési tervet, ami 500-1000ms

idot vesz igénybe” (INNET documentation, 2025). A késObbi, azonos struktiaraja

lekérdezések ezt a leforditott verziot hasznaljak a jovoben.

2. Adatbazis kapcsolat pool inicializalasa: Az elsd kapcsolat 1étrehozasa a connection

pool-ban lassabb, mint a kés6bbi, mar 1étezd kapcsolatok ujrafelhasznélésa.

3. PostgreSQL Buffer Pool Cache: Az elsé lekérdezés sordn az adatbazis lemezrol

olvassa be az adatokat mig a késobbi lekérdezések a RAM-ban cachelt adatokhoz férnek

hozza.” (Medium.com (2), 2025)

4. Index cache: Az elsé lekérdezés soran az indexek is betdltddnek a memoriaba, ami

szintén noveli a valaszidot.

Gyakorlati kovetkezmények:

Az ¢€les kornyezetben, ahol a szerver folyamatosan fut és rendszeres felhasznaloi aktivitas van,

a "cold start" probléma ritkan jelentkezik. Csak a kovetkezd esetekben tapasztalhato:

e Szerver Ujrainditas utdn

e Adatbazis szolgaltatds Gjrainditdsa utan

e Hosszu inaktivitasi periddus (tobb 6ra) utan

72

A valos lizemeltetési kornyezetben a felhasznalok tobbsége a ,,warm state” teljesitményt
tapasztalja (30-75ms), amely elfogadhatd valaszidét biztosit a platform hasznéalhatésaga

szempontjabol. Tehat a kovetkezd méréseket is ,warm state” allapotban végeztem el (8.
tablazat).

73

Adatmennyiség | Adatmennyiség | Adatmennyiség | Egyszerii | Osszetett | Lapozas
csere-igény targyak felhasznalok keresés szlirés (ms)
(darab) (darab) (darab) (ms) (ms)

10 000 99 805 10 ~5 ~3 ~6

100 000 1 001 149 10 ~7 ~5 ~75

200 000 2 000 677 10 ~10 ~6 ~200
400 000 4 000 787 10 ~15 ~7 ~240

8. tablazat - Valaszidok mérése kiilonbozo adatmennyiségek és funkciok esetén — Forras: Sajat mérés

Megfigyelések és kovetkeztetések
A teljesitményteszt eredményei alapjan a kovetkezé megallapitasokat tettem:
Keresési funkciok teljesitménye:

Az egyszerl és Osszetett keresési funkciok kiemelkedden jol teljesitettek még 400 000 csere-
igény mellett is. Az egyszerii keresés (egyetlen targy alapjan) 15ms alatt, mig az 0sszetett szlirés
(tobb tulajdonsag kombinalasaval) 7ms alatt végrehajtddott. Ez azt mutatja, hogy az adatbazis

indexelési stratégia hatékony, és a keresési algoritmus megfelelden skalazodik.
Lapozasi funkcio teljesitménye:

A lapozas teljesitménye exponencidlisan romlott az adatmennyiség novekedésével, kiilondsen
100 000 csere-igény felett. Ez varhato viselkedés, mivel a PostgreSOL OFFSET miivelete
nagyobb adathalmazoknal lassabb. 400 000 csere-igénynél a lapozasi idé 240ms volt, amely
még mindig elfogadhato felhasznaloi élményt biztosit (<300ms) a mesterséges intelligencia
szerint” (Perplexity-conversation, 2025), bar személyes véleményem alapjan ez mar lehet, hogy
bizonyos maximalis, felhaszndld szdmara eltlirhetd hatart surol. Ramakrishnan és Gehrke
(2003) magyardzata szerint ez a teljesitménycsokkenés a PostgreSOL OFFSET
mechanizmusanak alapveto korlatjaibol fakad: az adatbazis motornak sorrol sorra végig kell
olvasnia az dsszes elozo rekordot, még ha azokat nem is adja vissza a kliensnek”. Ez azt jelenti,

hogy az 50. oldal lekérdezéséhez (OFFSET 2450, LIMIT 50) az adatbazisnak eldszor ki kell

74

értékelnie és el kell dobnia az elsé 2450 sort, majd csak ezutan tud visszaadni 50 rekordot. Az
idébonyolultsag tehat O(n+k), ahol n az OFFSET értéke és k a LIMIT értéke, ami nagy n esetén
jelentds teljesitménycsokkenést okoz. (Ramakrishnan & Gehrke, 2003)

Skalazhatosagi kapacitas:

A platform 400 000 csere-igény (~4 millido targy) mellett is megfeleléen mukodik, ami
jelentésen meghaladja a jelenlegi piaci keresletet. A posts.tf platform szerint a napi aktiv
felhasznalok szama 4 000-5 000 f6 koriil van, igy a platform jelenlegi formajaban is képes lenne

tobb tizezres nagysagrendii csere-igény kezelésére.
Optimalizalasi lehetéségek:

A lapozasi teljesitmény tovabbi javitdsara tobb megoldas is rendelkezésre all: cursor-alapt
pagination bevezetése. Ezek az optimalizacidk azonban csak 200 000+ darab csere-igény esetén

valnak sziikségessé.

3.7 Mesterseges intelligencia szerepe a dolgozatban

A szakdolgozat készitése soran a Perplexity Al mesterséges intelligencia asszisztenst
hasznéltam tdmogat6d eszkozként a fejlesztési folyamat kiilonbozd szakaszaiban. Az MI
alkalmazasa jelentdsen hozzajarult a projekt hatékonysadgahoz és mindségéhez tobb teriileten
is.

3.7.1 Technikai tervezés ¢s kodoptimalizalas

Az MI segitségével optimalizaltam a backend query-ket, kiillondsen a nagy adatmennyiség (100
000+ darab csere-igény) kezelésénél. A keresési és lapozasi funkcidk teljesitményének javitasa
soran az Al javaslatokat adott az Entity Framework lekérdezések optimalizalasara (47. 4bra).

Az altalam készitett prompt (36. dbra).

75

Segits optimalizalni ezt az Entity Framework Core lekérdezést C#-ban.

A probléma, hogy lass(nagy adathalmaznél:

public async Task<object> SearchTradesAsync(ICollection<Tradeltem> items,

int page = 1, int pageSize = 58)

IQueryable<Trade> query = _db.Trades
MWhere(t => t.Deleted == false && t.Status != "closed");

foreach (var searchItem in items)

{
guery = guery.Where(t == t.Items.Any(dbItem ==

dbItem.Defindex == searchItem.Defindex &&
dbItem.Effect == searchItem.Effect &&
dbItem.paintDefindex == searchItem.paintDeftindex

1);

var trades = await query
JInclude(t => t.Items)
.Skip((page - 1) * pageSize)
.Take (pageSize)
.ToListAsync();

return trades;

200,008+ Trade és 4,000,008+ Item esetén ~ 7-5B8ms a vAlaszidd.

Hogvan optimaliza&lhatom?

36. dbra - csere-igény keresés optimalizacio — prompt — Forras: Perplexity-conversation (2025)
Al valaszai (kivonat) (37. dbra — 38. abra).
A fi problémék:

1. **N+1 query probléma*+*: Az Include(t =»> t.Items) minden Trade-hez
killon lekérdezést gemerdlhat
#*Nincs AsMoTrackimg()##: Az EF change tracking felesleges overhead

**ToListAsync() eldott nincs TotalCountss: igy dupla lekérdezes kell

Nosted loop a Where-ben: A foreach mindem iteracidban ij

lambda-t gemeral

37. abra - csere-igény keresés optimalizacio — valasz — Forras: Perplexity-conversation (2025)

76

Tovabbi optimalizalés:

- Indexek az Items tablan: Defindex, Effect, paintDefindex

- Compiled gquery hasznalata, ha ugyanazt a lekérdezést futtatod gyakran

- Projection haszmalata (.Select()) teljes entitasok helyett, ha csak
bizonyos mezdkre van sziikség

38. abra - csere-igény keresés optimalizacio - valasz 2 — Forras: Perplexity-conversation (2025)
Generalt az altalam elkészitett kodbol egy optimalizalt, atalakitott valtozatot, amelyet
megvizsgaltam és tovabbi forrasok alapjan (stackoverflow) meggy6zddtem arrdl, hogy helyes

¢s valoban jo, optimalizalt kodot készitett a mesterséges intelligencia.

3.7.2 Adatbazis séma tervezés

Az adatbdzis struktira kialakitasa soran (39. dbra) az MI tdmogatast nyujtott a kapcsolatok

specifikus optimalizaciok, indexek megvaldsitasaban.

Tervezek egy Team Fortress 2 kereskedési platform adatbazisat PostgreS0L-ben
Entity Framework Core-ral. A térgyaknak sok tulajdonsdga van:

defindex (int) - targy azonositd

quality (string) - unigue, strange, unusual

effect (int?) - unusual effekt azonositd

paintDefindex (int?) - festék azonositd

killstreak (int?) - 8,1,2,3

killstreaker (string?) - effekt neve

sheen (string?) - fényeffekt

spells (JSON array) - vardzslatok lista

wear (float?) - kopas érték

Egy Trade tibb Item-et tartalmazhat, egy User tobb Trade-et hozhat 1létre.

Kérdéseim:
1. A sok nullable tulajdonsagot kiilon tablakba kellene-e szervezni
(normalizalas)?
2. A spells-t JSONB oszlopban taroljam vagy kiilon tablaban?
. Milyen indexeket hozzak létre teljesitmény szempontjabdl?

Hogyan konfiguridljam az Entity Framework kapcsolatokat (1:N, N:M)?

39. abra - adatbazis tervezés — prompt — Forras: Perplexity-conversation (2025)

Al vélaszai (kivonat) (40. dbra).

77

1. MORMALIZALAS VS DENORMALIZALAS

NE normalizild tidlzottan! A sok nullable property (effect, paint, killstreak)
esetén a kiilon tablak csak nivelnék a JOIN komplexitast és rontandk a

teljesitményt. TARTS mindet az Items tdblaban nullable oszlopként:

Eldnydk:

- Egyszeriibb lekérdezések (nincs 5-& JOIN)

- Gyorsabb olvasds (1 query az dsszes tulajdonsaghoz)

- Jobb Entity Framework teljesitmény (kevesebb Include())

Hatranyok:
- Tobb MULL érték » de ez PostgreSQL-ben nem probléma
- Kevésbé "tiszta" normalizdlt forma » de olvasdsi teljesitmény fontosabb

2. SPELLS KEZELESE

Haszndlj JSONB oszlopot a spells-hoz! PostgreSQL nativ témogatasa
kivald és indexelhetd.

40. dbra - adatbazis tervezés — valasz — Forrds: Perplexity-conversation (2025)

Hibakeresés és problémamegoldas:

A fejlesztés soran felmeriilt technikai problémak (pl. JSON deserializacios hibdk, CORS
konfiguracios problémak) megoldasdban az Al gyors €s hatékony diagnosztikat biztositott,

magyardzatokkal és miikodo kodpéldakkal. Az altalam készitett prompt (41. dbra).

Angular alkalmazdsom nem tud kommunikalni az ASP.NET Core backend-del.
A bongészd konzoljdban CORS hibat kapok:

"Access to XMLHttpRequest at 'http://localhost:5888/api/Trade’' from origin
"http://localhost:4288' has been blocked by CORS policy: MNo
'Access-Control-Allow-Origin' header is present on the requested resource.”

Az ASP.NET Core Program.cs fajlomban van CORS konfiguracid:

builder.Services.AddCors();

De még mindig mem mikddik. Mi lehet a probléma?

41. abra - hibakeresés — prompt — Forras: Perplexity-conversation (2025)

Al vélaszai (kivonat) (42. dbra).

78

probléma sz, hogy bar hozzdadtad a CORS szolgaltatést (AddCors()),

de NEM alkalmaztad a middleware-t az app pipeline-ban.

ELYES KONFIGURACIO (Program.cs

f/ 1. CORS SZOLGALTATAS HOZZAADASA (ez megvan)
huilder.Services.AddCors(options =»

options.AddPolicy("AllowAngularDev®, policy =>
I

i
policy.WithOrigins("http://localhost:4288") /f/ Angular dev szerver
.AllowAnyHeader ()
-AllowAnyMethod()
.AllpwCredentials(); /f Ha JWT cookie-t haszndlsz

huilder.Services.AddControllers();
f{ ... tobbi szolgaltatas

sar app = builder.Build();

ff 2. CORS MIDDLEWARE ALKALMAZASA (EZ HIANYZIK!)
gpp -UseCors("AllowAngularDev"); Jf/ <-- KRITIKUS!

f{ FONTOS: UseCors()-nak UseAuthorization() ELOTT kell lennie!
App . UseAuthentication() ;

ppp -UseAuthorization();

app .MapControllers();
Bpp .Run();

YAKORI HIBAK:

. UseCors() nem lett meghivva » pontosan a te hibad

. UseCors() UTAN van UseAuthorization() + sorrend helytelen
5. WithOrigins() nem egyezik az Angular URL-jéwvel

. Production-ben elfelejtették frissiteni az origin-t

42. dbra - hibakeresés — valasz — Forras. Perplexity-conversation (2025)

3.7.3 Szakirodalmi kutatas

Az MI segitségével gylijtottem forrdsokat a Team Fortress 2 virtudlis gazdasagarol, a Steam
API dokumentécigjarol. A Perplexity Al képes volt régi forum bejegyzéseket is megkeresni,
amelyeket hivatkozasként tudtam felhaszndlni a szakdolgozati témam soran. Az Aaltalam

készitett prompt (43. dbra).

79

Keresek statisztikakat és kutatasi adatokat a Team Fortress 2 virtudlis
targyak kereskedési volumenérdl 2811-2813 kdzdtt. Konkrétan:

- Hamy tramzakcid tortént?

- Hany egyedi kereskedd vett részt?

- Van-e tudoményos publikacid errdl a témarol?

Valamint aktualis (2824-2825) Steam platform felhasznaldi szamokra is
szilkségem van.

43. abra - szakirodalom — prompt — Forras. Perplexity-conversation (2025)

Al valaszai (kivonat) (44. abra).

80

Talaltam eqgy relevans tudomdnyos forrast:

1. TEAM FORTRESS 2 GAZDASAGI KUTATAS

Yanis Varoufakis (Gorog kdzgazdasz, késdbb pénzigyminiszter) 2812-ben

publikélt egy tanulményt a TF2 virtuwalis gazdasagardl:

Forras: "Arbitrage and Equilibrium in Team Fortress 2"

Link: https://gwern.net/docfeconomics/2812-varoufakis-teamfortress2arbitrage.html

Kulcsadatok:

2811 sugusztus - 2813 majus kdzott 78+ millid tranzakcid

388+ millid targy cserélt gazdat
4,267,832 egyedi kereskedd vett részt

itlagnsan 188,888+ kereskedés/nap (>1 tranzakcio/mésodperc)

Ez egy peer-reviewed kutatéas, amely a TF2 gazdasagot valds piackent

elemezte arbitrage és egyensily szempontjabdl.

2. STEAM PLATFORM STATISZTIKAK (2824-2825]

50 Magazine (2825) Steam Statistics jelentés:
- 147 millid havi aktiv felhasznala (2825 Q1)

- 132 millid MAU (2824) » 11.4% novekedés

- Korosztdlyi megoszlas: 25-34 év (38%), 18-2& év (31%)

Link: https://sqmagazine.co.uk/steam-statistics

3. VIRTUALIS TARGYAK GLOBALIS PIACA
Mordor Intelligence (2825) jelentés:
208241 91.66 millidrd USD
26825 (eldrejelzés): 112.33 millidrd USD
20838 (eldrejelzés): 261.36 millidrd USD

Link: https://www.mordorintelligence.com/industry-reports/virtual-goods-market

4. REDDIT KOZOSSEGI FELMERES

Reddit r/tf2 kozosség demografiai felmérés (2824, 622 résztvevd):

- 15-25 éves korosztaly: 75.4%

- Aktiv havi jatékosszam: 46,682 (2025 oktdber)

Link: https://www.reddit.com/r/tf2/comments/1ejfb56/

44. abra - szakirodalom — valasz — Forras: Perplexity-conversation (2025)

3.7.4 Dokumentacio és szakdolgozat strukturalas

A szakdolgozat fejezeteinek felépitésében,

forrasok és

definiciok 0Osszegylijtése

szakdolgozatbol és abc alapjan sorba rendezése. Az altalam készitett prompt (45. abra).

81

Kérlek ird meg a hivatkozasok fejezetet, szedd
Ossze a szakdolgozatbdl

& Answer Sources

Szakdolgozat_Juhasz_Krisz

A szakdolgozatodbdl dsszegylijtéttem az dsszes hivatkozast és rendszereztem Sket. Ime :
7.3 Hivatkozasok fejezet:

7.3 Hivatkozasok

Webes forrasok és piaci statisztikak

45. dbra - hivatkozdsok — prompt — Forras: Perplexity-conversation (2025)

Al valaszai (kivonat) (46. abra).

82

7.3 Hivatkozasok

Angular Documentation (2025): Angular Framework Documentation. http
(Letdltve: 2025. oktdber)

backpack.tf forums (2025): Filtering by spells not possible anymore?

http orum ck.tfftop -filtering-ln s-not-p e-anymore
(Letbltve: 2025. oktéber)

GitHub - Nicklason (2025): node-tf2-item-format - TF2 item format parser library.
http github.com/Nic 1/node-tf2-item-format (Letdhtve: 2025. oktdber)
Hays Salary Guide (2025): Hungary Salary Guide 2024 - Digital.

http vw.hays.hu/documents/63 3/HUSG24Dic
(Letdltve: 2025. oktdber)

IETF RFC 6749 and 6750: The QAuth 2.0 Authorization Framework.
https://datatracker.ietf.org/doc/html/rfc6749 (Letbltve: 2025. oktdber)

IETF RFC 7519: JSON Web Token (JWT). http
(Letdltve: 2025. oktdber)

Intel Market Research (20258): Steam Platform Games Market Outlook 2025-2032.

https: vw.intelmarketr ch.com/steam-platform-games 51-1210
(Letbltve: 2025. oktéber)

Linkedin/Verified Market Reports (2025): Online Game Asset Trading Market Size.
https://www.linkedin.com/pulsefonline-game- et-trading-market-size-importance-
Hylye (Lettltve: 2025. oktdber)

Live Player Count (2025): Team Fortress 2 Steam Charts. https://live-player-
count.com/game/team-fortress-2 (Letdltve: 2025. oktéber)

LogRocket Blog: Performance comparison for sample apps built with Angular, React, and
Vue. https://blog.logrocket.com/angular-vs-react-vs-vue-js-comparing-performance

(Letdltve: 2025. oktdber)

46. dbra - hivatkozdsok — vélasz — Forrds: Perplexity-conversation (2025)
Az Al hasznalata nem helyettesitette a sajat szakmai dontéshozatalt és kodolasi munkat, hanem
kiegészitd eszkdzként szolgalt, amely felgyorsitotta a fejlesztést, segitett elkeriilni a gyakori
buktatokat. Minden Al altal javasolt megoldast kritikusan értékeltem és a projekt specifikus
igényeihez igazitottam. Fontos kiemelnem, hogy személy szerint én tdmogatom a mesterséges
intelligencia hasznalatat, de csak bizonyos kereteken beliil és csak abban az esetben, ha a
hasznaldja ért barmilyen szinten is ahhoz a témakorh6z, amellyel kapcsolatban kérdez. Nagyon
fontos az 6nvalidacio €s az alaposabb, részletesebb utanajaras, akar mas platformokon is, nem

szabad, st tilos csak a mesterséges intelligenciara bizni magat az embernek.

&3

4 Vita

A fejlesztés soran szamos technoldgiai és architekturalis dontést hoztam, amelyek befolyésoltak
a platform végsd megvaldsitdsat. Ebben a fejezetben kritikusan értékelem ezeket a
valasztasokat, bemutatom az alternativakat és elemzem, hogy utolag milyen elényoket és

hatranyokat tapasztaltam.

4.1 Frontend technologia valasztasa: Angular vs React

Az Angular keretrendszer mellett dontottem a személyes 4 éves tapasztalatom és a TypeScript
nativ timogatasa miatt. Bar ez a valasztas biztositotta a tipusbiztonsagot és a komponens-alapu
architektarat, a React alternativaja bizonyos szempontbol eldnydsebb lett volna. ,,4 teljesitmény
szempontjabol a React virtualis DOM-ja gyorsabb Ul frissitést tesz lehetové, koriilbeliil 0,8s
betéltési idovel az Angular 1.2s-hez képest.” (Performance comparison for sample apps built
with Angular, React, and Vue, 2025). A Team Fortress 2 kereskedési platform esetében, ahol a
targylista-nézetek és sziirések gyakori frissitést igényelnek, a React hatékonyabban kezelné a
valos idejli adatfrissitéseket. Az Angular valos DOM hasznalata nagyobb adathalmazok esetén
lassuldst okozhat, kiilondsen a kétiranyt adatkotés miatt. Ugyanakkor az Angular elénye a
strukturalt architekturaja, amely vallalati kornyezetben stabilitdst nyujt. A beépitett
szolgaltatdsok - form kezelés, routing, HTTP kliens, dependency injection - jelentOsen
gyorsitottak a fejlesztést. Utdlag értékelve, ha a projekt elsddleges célja a maximalis
teljesitmény és skalazhatosag lett volna, a React lett volna az optimalisabb vélasztas. Azonban

a tanulési célok és a meglévo tapasztalat miatt az Angular tovabbra is indokolt dontés volt.
4.2 Backend valasztas: ASP.NET Core vs Node.js

A C# és ASP.NET Core mellett azért dontottem, mert erdsen tipusos, vallalati kornyezetben
kiprobalt megoldast akartam alkalmazni, amely mély objektumorientalt programozasi
ismereteket igényel. A microservice részben ugyan sikeresen alkalmaztam a Node.js-t (vo. 3.5.4
fejezet), azonban a f6 backend réteghez a C#-ot valasztottam (v0. 3.5.3 fejezet). A teljesitmény
szempontjabol az ASP.NET Core kivaldan teljesit nagy CPU-igényti feladatoknal. A tobbszalu
megkozelités és a hatékony memoriakezelés miatt az ASP.NET Core gyakran gyorsabb
valaszidét produkal terhelés alatt. Ugyanakkor a Node.js eseményvezérelt architekturaja
kifejezetten hatékony valos idejli alkalmazasoknal, illetve azt is fontos megemliteni, hogy
kisebb feladatokra nagyon egyszertien haszndlhat6. Rugalmasan importalhatok egyéb, kiilsé

konyvtarak. A projekt esetében, ahol a f6 backend miiveletek adatbazis lekérdezések, JWT

84

hitelesités és Steam API integracié (vo. 3.3.3 fejezet), mindkét technologia megfeleld lett volna.
A Node.js elonye lett volna az egységes JavaScript/TypeScript stack a frontend-tdl a backend-
ig, ami csokkentette volna a kontextusvaltast és egyszerisitette volna a fejlesztést. Tovabba a
microservice komponensnél mar Node.js-t hasznédltam a tf2-node konyvtar miatt (vo. 3.5.4
fejezet), igy az egységes stack még logikusabb lett volna. Ha a cél egy gyors piaci megjelenés
a teljes stack Node.js-alapi megolddsa elénydsebb lett volna. Azonban az egyetemi
tanulmanyaim és a vallalati kornyezetben gyakoribb C# készségek fejlesztése miatt az

ASP.NET Core valasztas tovabbra is hasznos volt szakmai szempontbol.

5 Konkluziok

Az eredmények tiikkrében €s a vita soran feltart onkritikus kockazatok ismeretében atgondoltam,
hogy ha ujra kezdhetném a projektet, vajon ugyanazokat a dontéseket hoznam-e. Ahogy senki
sem épitene még egyszer pontosan ugyanigy egy hazat, miutdn mar latja az 6sszes dontése

kovetkezményét, én sem kovetném ugyanazt az utat minden teriileten.

5.1 Kliensoldali technologia valasztasa

Dontés: Ha jra kezdhetném, tovabbra is az Angular-t valasztanam, kiilondsen az 0j zoneless

change detection ismeretében.

Indoklas: Bar a React virtudlis DOM-ja jobb teljesitményt nytjtott a hagyomanyos Zone.js-
alapu Angular-hoz képest, az Angular 18-t6] kezdve elérhetd zoneless change detection
radikélisan megvaltoztatja ezt az egyenletet. A Zone.js eltavolitisa jelentds
teljesitménynovekedést eredményez, mivel az Angular tobbé nem kényszerill az egész
komponensfat megvizsgalnia minden DOM eseménynél. Az 0j zoneless megkozelités a Signals
alapt reaktivitasra épiil, amely sokkal hatékonyabb és prediktivebb véltozaskezelést tesz
lehetové. Az 1 fiiggvények hasznalata révén az Angular pontosan tudja, mely komponenseket

kell frissiteni, elkeriilve a felesleges renderelési ciklusokat.

Konklazié: ,,Az j zoneless Angular teljesitményben is versenyképes vagy jobb a React-nél”
(Medium.com (3), 2025), mikoézben megtartja az Angular strukturalt, véleményalapu
architektirdjanak elényeit. A 4 éves tapasztalatom, a TypeScript nativ timogatas, a beépitett
szolgaltatdsok és most mar a zoneless teljesitmény egylittesen egyértelmiien indokoljdk az
Angular valasztast. Ha Gjra kezdhetném, biztos, hogy Angular-t valasztanék, de azonnal

zoneless konfiguracioval.

85

5.2 Szerveroldali technologia valasztasa

Dontés: Ha ujra kezdhetném, teljes Node.js stack-et valasztanék a hibrid ASP.NET Core +
Node.js helyett.

Indoklas: Egyik hibam az volt, hogy két kiilonb6zd technoldgiat hasznaltam (C# backend és
Node.js microservice), ami felesleges komplexitdst hozott a projektbe. Az egységes
JavaScript/TypeScript stack a frontend-t6l a backend-ig jelentdsen egyszerlsitette volna a

fejlesztést és csokkentette volna a kontextusvaltast.

Konklizio: A microservice komponensnél mar sikeresen hasznaltam a Node.js-t a tf2-node
konyvtar miatt (vO. 3.5.4 fejezet), ami igazolta, hogy a Node.js tokéletesen alkalmas lenne a
teljes backend szdmara. Az ASP.NET Core valasztds inkabb tanulasi célbol volt hasznos
(egyetemi tanulmanyok, készségek fejlesztése), de nem az optimalis dontés volt a projekt sikere

szempontjabol.
5.3 Osszegzés

A dontések tobbsége tanuldsi szempontbol elfogadhato volt, de projekt sikere szempontjabol
nem voltak optimalisak. Ha a cél egy valoban piacképes, gyorsan skalazhato platform lett volna,
a zoneless angular + teljes Node.js stack kezdés lett volna a helyes ut. Ugyanakkor felismerem,
hogy a szakdolgozat elsddleges célja a tanulas és készségfejlesztés volt, nem egy azonnal
piacképes termék létrehozédsa. Ebbdl a perspektivabol a dontések még elfogadhatok, mert

lehetdvé tették kiillonbozo technologiak kiprobalasat €s mély szakmai tapasztalat megszerzését.

6 Osszefoglalas, j6vokép

Ez a fejezet két fo részre tagolddik. Az 0Osszefoglalds a szakdolgozat kulcsfontossagu
eredményeit, technologiai dontéseit mutatja be, réviden Osszegezve a projekt céljat,
megvalodsitasat és tanulsagait. A jovokeép rész ezt kovetden konkrét fejlesztési iranyokat vazol

fel.

6.1 Osszefoglalas

A szakdolgozat célja egy webalapu targycsere-igény hirdetési platform megtervezése ¢és
megvalodsitasa volt, amely lehetévé teszi a Steam-felhasznalok szdmara Team Fortress 2
virtualis targyak hatékony kereskedelmét (vo 1.1 fejezet). A fejlesztés soran modern
technologidkra ¢épiilé (pl. Angular 18, ASP.NET Core 9, PostgreSQL 16, Node.js 20),

86

haromrétegti architekturat valdsitottam meg: Angular frontend, ASP.NET Core backend ¢és
Node.js alapt microservice komponens. A projekt indokoldsat a jelenlegi piacterek korlatai
adtak, bizonyos sziirési lehetéségek hidnya, az elavult felhasznaléi feliiletek és a korlatozottan
testre szabhato keresési lehetdségek (vo. 1.3.2 fejezet). A globalis virtudlis targyak piaca 2024-
ben 91,66 milliard USD értéket képviselt, amely 2030-ra varhatéan 261,36 milliard USD-ra nd,
jelezve a téma gazdasagi jelentdségét (vo. 1.1 fejezet). A platform f6 funkcioi koz¢ tartozik a
targyak hirdetése, ajanlatok tétele mas felhasznaldk hirdetéseire, valamint a hatékony keresés
¢s szlrés a birtokolt targyak kozott (vo. 3.5.2.7 fejezet). A biztonsagot a Steam OpenlD
autentikacio és a JWT token alapu hitelesités biztositja. Az adatbazis PostgreSQL kdrnyezetben
kertilt implementalasra Entity Framework Core ORM hasznalataval. A teljesitménytesztek
igazoltak a rendszer skalazhatosagat — 400 000 darab csere-igény €s 4 millid darab targy mellett
az egyszerli keresés 15ms, a komplex szlirés 7ms alatt végrehajtodott. A lapozasi funkcio
240ms valasziddvel miikodott nagy adathalmazoknal, amely elfogadhat6 felhasznaloi élményt
biztosit, bar késobbi optimalizalasra szorulhatnak bizonyos funkciok (vo. 3.6.3 fejezet). A
fejlesztési koltségek junior fejlesztdi orabér alapjan 1 616 408 Ft-ra ragtak 388 6ra munkaid6
mellett, mig az ilizemeltetési koltség havi 4 558 Ft. Az optimista forgatokonyv szerint 16
honapos megtériilési idével szamolhatunk, azonban a platform elsddleges célja a szakmai
kompetencidk fejlesztése volt, nem az tizleti haszonszerzés (vo. 1.5.2 fejezet). A vita fejezet
kritikusan értékelte a technologiai dontéseket (vo. 4. fejezet). Az Angular valasztasa indokolt
volt a személyes tapasztalat és a zoneless change detection teljesitményndvekedése miatt. Az
ASP.NET Core és Node.js hibrid megoldas komplexitast hozott, egy egységes Node.js stack
egyszeriibb lett volna. A szakdolgozat bizonyitotta, hogy lehetséges egy modern, skalazhato
kereskedési platformot épiteni, amely potencidlisan versenyképes lehet a meglévo

megoldasokkal szemben.

6.2 Jovékép

A platform jelenlegi allapota egy milkodéképes MVP (Minimum Viable Product), amely
bizonyitja a koncepcio életképességét, azonban szamos teriileten tovabb fejleszthetd a piaci

versenyképesség érdekében.

e Zoneless Angular atallas: Az Angular 19 hasznalataval az alkalmazas teljesitménye
30-40%-kal javithato, kiilondsen a gyakori UI frissitéseknél.
e Valds idejii értesitési rendszer: WebSocket vagy SignalR integracio, hogy a

felhasznalok azonnal értesiiljenek 0j ajanlatokrol, kommentekrdl a hirdetéseikre.

87

o Kozosségi funkciok bovitése: Felhasznaloi profilok, hirnévrendszer, kereskedési
torténet megjelenitése, ami noveli a bizalmat és csokkenti a csalasi kisérleteket.

e Tobb jaték tamogatasa: A platform kiterjesztése Counter-Strike 2, Dota 2, Rust és mas
Steam jatékok virtualis targyaira. Ez exponencialisan novelné a potencialis felhasznaloi
bazist.

e Vaiasarolhaté elemek: A platformon elérhetévé valnanak vasarolhato elemek (pl. egyedi

profil nézetek, egyedi bedllitdsok, egyedi név megjelenités)

A platform jelenleg nonprofit moédon miikddik, azonban a jovoben tobb bevételi forras is

lehetséges:

¢ Freemium modell: Alapfunkciok ingyenesek, de prémium funkciok (korlatlan bump,
kiemelés, tobb hirdetés egyszerre) dij ellenében elérhetok.
o Affiliate marketing: Kozvetitdi jutalék Steam jatékok és DLC-k ajanlasabol.

¢ Reklam bevételek: Nem zavard banner hirdetések, célzottan a gamer kdzonségnek

7 Mellékletek

Ebben a fejezetben a szakdolgozatban talalhatd roviditések, definiciok és abrak jegyzéke

talalhato meg.
7.1 Abrajegyzék
1. dbra - OpenlD miikddésének dbrazolasa — Forrds: openid.net..........ccecvveevvienciieencieenieeens 29

2. 4bra - Steam bejelentkezé gomb Ul elem - verzid 1 — Forras: Steam Web API Documentation

4. 4bra - Osztalydiagram - f6 entitasok kozotti kapcsolatok — Forras: Sajat képerny6foto 32

5. ébra - Aktivitas diagram — Authentikéacio — Forras: Sajat képernyOfoto..........cceevvveenneennns 32
6. abra - Felhasznaloi fiok funkciok — Forras: Sajat képernydfotdocveevviiiiieniiiicenieen, 34
7. ébra - Authentikéacids szolgaltatas — kodrészlet — Forrds: Sajat implementacio 38
8. abra - Authentikacio hitelesités — kodrészlet — Forras: Sajat implementacio 39

9. abra - Swagger dokumentaciod — Forras: Sajat képernyOfotoccccveveeriiiiienieeiienieene, 41
10. abra - Sajat profil nézet — Forras: Sajat KépernyOfotd.......c.cevvvveeiiiieiiieeiiieeieecee e, 43

11. abra - Komponens alapu architekttra - csere hirdetési feliilet — Forras: Sajat képernydfotd

.. 45
12. abra - Csere-igény hirdetési feliilet — Forras: Sajat képernySfoto........ocevvvvvvevvveieennnennnen. 46
13. abra - Szlirési eredmény — Forras: Sajat k€pernyOfoto.........oevveeeiiieeiiieeiieeieeeee e, 47
14. abra - Kivalasztott elem abrazolasa — Forras: Sajat képernySfotdcccvvvvvvevvieiiennnennen. 48
15. &bra - Torlés funkcid — Forras: Sajat képernyOfoto.........covvvviriiniininiiiniininieneceeienens 48
16. abra - Targy vasarlasa funkci6 — Forras: Sajat képernySfotd.........ccoevvevvieciienieeniienieenen. 49
17. &bra - Alapértelmezett targy keresd feliilet — Forrés: Sajat képernydfoto........cocevernennens 50
18. &bra - Targyak listas nézete — Forras: Sajat képernyOfotdcooeeverviviiieniienicnennenens 50
19. abra - Targy személyre szabasa — Forras: Sajat képernyOfotdcccvevvieviieniienieennennen. 51
20. abra - Varazslatok valaszto feliilet — Forras: Sajat képernySfoto.........ccocveveevieniinenicnnne 52
21. abra - Egyszerii csere-igény bemutatasa — Forras: Sajat képerny0foto.........ccccveevveeennenn. 53
22. 4bra - Figyelmeztetd iizenet — Forras: Sajat képernyOfotd.........ccevvvviriineiiinicneniiennne 53
23. ébra - Csere-igény keresési feliilet — Forras: Sajat képernyOfoto.........cccueeveevrierieeiieennnns 54
24. abra - Keresési eredmények feliilet — Forras: Sajat képernyOfoto........ccceevcvvvevciveenveeennenn. 55
25. 4bra - Csere-igény kezel6 feliilet — Forras: Sajat képernySfotdocevvevviiiiniincnncnnne 56
26. abra - Csere-igény modositasi feliilet — Forras: Sajat képernySfotdcccvveevvveenveeennenn. 57
27. ébra - Sikeres csere modositas lizenet — Forras: Sajat képernySfotocoecvveevvveerveeennen. 57
28. abra - Kommentek feliilet — Forras: Sajat képernySfotoc.oocvvveiiiniiiiiiniiiieieeee 58
29. abra - Ajanlatadas - targy valaszto feliilet — Forras: Sajat képerny6fotocceeeveeneee. 59
30. &bra - Szerveroldali authentik4cio — kodrészlet — Forrds: Sajat implementacio 61
31. abra - Swagger dokumentacié — profilkezelés — Forras: Sajat képernydfoto..................... 61

89

32. 4bra - microservice architektira — Forras: Sajat képerny0fotdccceevvivvienieeiiienneenen. 65

33. abra - Authentikacio teszteset — kodrészlet — Forras: Sajat implementacio....................... 67
34. abra - Sikeres teszteset abrazolasa — Forras: Sajat képernydfotd.......ccovvvvvvivevieeieenineennen. 68
35. abra - sikertelen teszteset abrazolasa — Forras: Sajat képernySfotoccovveevveeeiieecneens 68

36. abra - csere-igény keresés optimalizacio — prompt — Forras: Perplexity-conversation (2025)

.. 77
39. 4bra - adatbazis tervezés — prompt — Forras: Perplexity-conversation (2025)................... 77
40. abra - adatbazis tervezés — valasz — Forras: Perplexity-conversation (2025)..................... 78
41. abra - hibakeresés — prompt — Forras: Perplexity-conversation (2025)ccceccvevveennennee. 78
42. dbra - hibakeresés — valasz — Forras: Perplexity-conversation (2025).......ccccceeveeveeenenee. 79
43. abra - szakirodalom — prompt — Forras: Perplexity-conversation (2025)cccccevveennenn. 80
44. 4bra - szakirodalom — valasz — Forras: Perplexity-conversation (2025)c.cccceverienneee 81
45. abra - hivatkozasok — prompt — Forras: Perplexity-conversation (2025).......c.cccceevvveennen. 82
46. abra - hivatkozasok — valasz — Forras: Perplexity-conversation (2025)ccccceceverviennnee 83

47. 4bra - SearchTradesAsync csere-igény keresés — kodrészlet — Forras: Sajat implementécio

48. abra - ItemSelectorFacade csere-igény kezeld osztdly — kodrészlet — Forras: Sajat

TMPLIEMENTACIO ...ttt ettt st e bt e et e s be e st e e bt e eabeenbeesareas 99

49. abra - Kliensoldali csere-igény kezel6 osztaly — kodrészlet — Forras: Sajat implementécio

50. 4dbra — ItemContainerComponent targy megjelenité elem — kodrészlet — Forras: Sajat

TMPLIEMENTACIO ...ttt et sttt et e bt et esbbeeabeesaeeeaneeneee 101

90

51. abra - ItemContainerComponent targy megjelenitd elem — kodrészlet — Forras: Sajat

180010] (533013017103 10 OO PRSP P RPN 102

7.2 Roviditések jegyzek

API (Application Programming Interface): Alkalmazasprogramozasi interfész
ASP.NET (Active Server Pages .NET): Microsoft webes keretrendszer

CORS (Cross-Origin Resource Sharing): Kereszt-eredetii eréforras-megosztas
CPU (Central Processing Unit): K6zponti feldolgozé egység

CRUD (Create, Read, Update, Delete): Létrehoz, olvas, frissit, torol

DOM (Document Object Model): Dokumentum objektum modell

EF Core (Entity Framework Core): Entity Framework Core ORM

ER (Entity-Relationship): Entitas-kapcsolat (diagram)

GB (Gigabyte): Gigabajt

GDPR (General Data Protection Regulation): Altalanos Adatvédelmi Rendelet
HTTP (HyperText Transfer Protocol): Hipertext atviteli protokoll

HTTP (HyperText Transfer Protocol Secure): Biztonsdgos Hipertext atviteli protokoll
IDE (Integrated Development Environment): Integralt fejlesztéi kornyezet
JSON (JavaScript Object Notation): JavaScript objektum jelolés

JWT (JSON Web Token): JSON webes token

LINQ (Language Integrated Query): Nyelvbe integralt lekérdezés

LTS (Long-Term Support): Hosszu ideig tamogatott

ORM (Object-Relational Mapping): Objektum-relacios leképzés

RAM (Random Access Memory): tetszéleges hozzaférésti memoria

SEO (Search Engine Optimization): KeresGoptimalizalas

91

SQL (Structured Query Language): Strukturalt lekérdezési nyelv

SSD (Solid-state drive): Tartos allapott meghivo

SSL (Secure Sockets Layer): Biztonsagos szoftvercsatorna-réteg

TF2 (Team Fortress 2): Team Fortress 2 (jaték neve)

TLS (Transport Layer Security): Szallitasi réteg biztonsag

URL (Uniform Resource Locator): Egységes eréforras-helymeghatirozo
USD (United States Dollar): Amerikai dollar

VPS (Virtual Private Server): Virtualis szerver

XP (Experience point): Tapasztalati pont

7.3 Definiciok jegyzék

Affiliate linkek: Olyan webes hivatkozasok, amelyeken keresztiil torténd vasarlas utan a link

tulajdonosa jutalékot kap. A platformon potencialis bevételi forrasként szolgalhat.

All-class: Olyan virtualis targy a Team Fortress 2 jatékban, amely minden jatékos-osztaly

szamara viselhetd vagy hasznalhato.

Backpack.tf: A Team Fortress 2 kozOsség legnagyobb és legismertebb virtudlis targy

értékbecsld és kereskedési platformja. Hivatkozési pontként szolgal az arképzéshez.

Bongészébovitmény: A webbongészOhoz telepithetd kisalkalmazas, amely kiterjeszti a

bongészd funkcionalitasat (pl. Steam Inventory Helper).

Bump: A hirdetés "feldobasa" a lista elejére, hogy nagyobb lathatosagot kapjon. A platform

gamifikéacios eleme.

Bump limit: A felhasznal6 altal adott idOkereten beliil végrehajthatdé bump miveletek

maximalis szama.

Controller: Az MVC architektiraban a bejové HTTP kéréseket kezel6 komponens, amely a

kérést feldolgozza és a megfeleld valaszt generdlja.

Database: Adatbazis, strukturalt adatok taroldsdra szolgald rendszer. A szakdolgozatban

PostgreSQL adatbazis keriil alkalmazasra.

92

Dictionary: Kulcs-érték parok tarolasara szolgdlod adatszerkezet, amely gyors keresést tesz

lehetévé hash tabla alapjan.
Domain: Internetes domain név, a weboldal egyedi cime (pl. example.com).

Effektek: Specialis vizualis hatasok a Team Fortress 2 virtualis targyakon (pl. Burning Flames,

Circling Hearts), amelyek jelentdsen novelik az érték ét.

Full-stack: Olyan fejlesztd vagy fejlesztési megkozelités, amely mind a frontend (kliens oldal),

mind a backend (szerver oldal) technologidkat atfogja.

Hash tablak: Adatszerkezet, amely kulcs-érték parokat tarol, és konstans idében (O(1)) teszi

lehetdvé az adatok elérését.

Hosting: Webszolgaltatds, amely szervertérhelyet és eréforrasokat biztosit webalkalmazasok

iizemeltetéséhez.
Junior: Kezdd szintli szakember (pl. junior fejlesztd), jellemzden 0-3 év tapasztalattal.

Microservice: Mikroszolgaltatds alapi architektura, ahol az alkalmazas kisebb, 06nallo

szolgaltatasokra van bontva, amelyek egymastol fiiggetleniil fejleszthetok és telepithetok.

OpenlID: Nyilt szabvanyu authentikacidés protokoll, amely lehet6vé teszi a felhasznalok

szamara, hogy egyetlen identitassal tobb webhelyre bejelentkezzenek. A Steam ezt hasznalja.

Osztaly-specifikus: Olyan virtualis targy a Team Fortress 2-ben, amely csak meghatarozott

jatekos-osztalyok szamara hasznalhato (pl. csak a Soldier osztalynak).

Pagination: Lapozas, nagy adathalmazok kezelésének moddszere, ahol az adatok kisebb,

oldalakra bontott részletekben jelennek meg.

Parser: Elemzé program vagy szolgaltatds, amely strukturdlatlan vagy félig strukturalt

adatokat (pl. Steam API vdalasz) értelmez és strukturalt formatumba alakit.

Penetracios tesztelés: Biztonsagi tesztelési modszer, amelynek célja a rendszer

sebezhetdségeinek feltarasa szimulalt timadasok segitségével.

Posts.tf: Team Fortress 2 kereskedési platform, amely a dolgozat benchmarking

referencidjaként szolgal.

Reddit: K6z6sségi platform, ahol a Team Fortress 2 kozdsség aktiv, és kereskedési ajanlatokat

1s megosztanak.

93

Repository: Adatelérési réteg a szoftverarchitektiraban, amely absztrahalja az adatbazis

miiveleteket és egységes interfészt biztosit.

Ritkasagi szintek: A Team Fortress 2 virtualis targyak besorolasi kategériai (pl. Unique,

Genuine, Vintage, Strange, Unusual), amelyek meghatarozzak az érték iiket.

Service: Szolgaltatasi réteg a szoftverarchitekturaban, amely az {izleti logikat tartalmazza ¢s

kozvetit a controller és a repository kozott.

Spell: Varazsigék vagy varazslatok, amelyeket Halloween esemény soran lehet a Team Fortress

2 targyakra alkalmazni, specialis vizualis effekteket adva.

SSL tanusitvany: Digitalis tantsitvany, amely titkositott HTTPS kapcsolatot biztosit a szerver

és a kliens kozott.

Steam: A Valve Corporation altal fejlesztett digitalis jatékelosztdé platform, amely a

szakdolgozat témajanak kozponti elemét képezi.

Szinezések: Festékek (paint), amelyekkel a Team Fortress 2 targyakat kiilonb6z0 szinekre lehet

festeni (pl. Team Spirit, Australium Gold).

Taunts: Gunyolddasok, kiilonleges animaciok a Team Fortress 2 jatékban, amelyeket a

Jjatékosok megvasarolhatnak és hasznalhatnak.

Team Fortress 2: A Valve Corporation altal fejlesztett osztaly-alapu tobbjatékos first-person

shooter jaték, amely a dolgozat fokuszéaban all.

TF20utpost: Korabbi népszerii Team Fortress 2 kereskedési platform, amely 2018-ban bezart,

de torténelmi jelentdséggel bir a kdzosségben.

Valve: Amerikai videojaték-fejlesztd €és -kiadd cég, a Steam platform és a Team Fortress 2

tulajdonosa.

Virtualis targy: Digitalis objektum egy videojatékban, amely a jatékos virtudlis tulajdona, de
valos pénzzel is kereskedhetd (pl. TF2 sapkék, fegyverek).

7.4 Hivatkozasok

Angular Documentation (2025): Angular Framework Documentation. https://angular.dev

(Letoltve: 2025. oktdber)

94

https://angular.dev/

backpack.tf forums (2025): Filtering by spells not possible anymore?
https://forums.backpack.tf/topic/86895-filtering-by-spells-not-possible-anymore ~ (Letoltve:
2025. oktober)

GitHub - Nicklason (2025): node-tf2-item-format - TF2 item format parser library.
https://github.com/Nicklason/node-tf2-item-format (Letdltve: 2025. oktdber)

Hays Salary Guide (2025): Hungary Salary Guide 2024 - Digital.
https..//www.hays.hu/documents/63283/61549493/HU+SG24+Digital+01+2024+secured.pdf

#page=48 (Letdltve: 2025. oktdber)

IETF RFC 6749 and 6750: The OAuth 2.0 Authorization Framework.
https://datatracker.ietf.org/doc/html/rfc6749 (Letoltve: 2025. oktdber)

IETF RFC 7519: JSON Web Token (JWT). https://datatracker.ietf.org/doc/html/rfc7519
(Letoltve: 2025. oktober)

Intel Market Research (2025): Steam Platform Games Market Outlook 2025-2032.
https://www.intelmarketresearch.com/steam-platform-games-2025-2032-951-1210 (Letoltve:
2025. oktober)

LinkedIn/Verified Market Reports (2025): Online Game Asset Trading Market Size.
https://www.linkedin.com/pulse/online-game-asset-trading-market-size-importance-Sylye

(Letoltve: 2025. oktober)

Live Player Count (2025): Team Fortress 2 Steam Charts. https:/live-player-

count.com/game/team-fortress-2 (Letoltve: 2025. oktober)

LogRocket Blog: Performance comparison for sample apps built with Angular, React, and Vue.
https://blog.logrocket.com/angular-vs-react-vs-vue-js-comparing-performance (Letoltve:

2025. oktober)

Medium.com (1) - AudaciaTech (2025): Investigating the performance benefits of EF Core 6.0
compiled models feature. https://medium.com/@audaciatech/investigating-the-performance-

benefits-of-ef-core-6-0-compiled-models-feature-6£5acd750037 (Letoltve: 2025. oktober)

Medium.com (2) - Jramcloud1 (2025): 02 - PostgreSQL Performance Tuning: Understanding
PostgreSQL Shared Buffers for Performance Tuning. https://medium.com/@jramcloud1/02-

95

https://forums.backpack.tf/topic/86895-filtering-by-spells-not-possible-anymore
https://github.com/Nicklason/node-tf2-item-format
https://www.hays.hu/documents/63283/61549493/HU+SG24+Digital+01+2024+secured.pdf#page=48
https://www.hays.hu/documents/63283/61549493/HU+SG24+Digital+01+2024+secured.pdf#page=48
https://datatracker.ietf.org/doc/html/rfc6749
https://www.intelmarketresearch.com/steam-platform-games-2025-2032-951-1210
https://www.linkedin.com/pulse/online-game-asset-trading-market-size-importance-5ylye
https://live-player-count.com/game/team-fortress-2
https://live-player-count.com/game/team-fortress-2
https://blog.logrocket.com/angular-vs-react-vs-vue-js-comparing-performance
https://medium.com/@audaciatech/investigating-the-performance-benefits-of-ef-core-6-0-compiled-models-feature-6f5acd750037
https://medium.com/@audaciatech/investigating-the-performance-benefits-of-ef-core-6-0-compiled-models-feature-6f5acd750037
https://medium.com/@jramcloud1/02-postgresql-performance-tuning-understanding-postgresql-shared-buffers-for-performance-tuning-0a61086edee7

postgresgl-performance-tuning-understanding-postgresql-shared-buffers-for-performance-

tuning-0a61086edee? (Letdltve: 2025. oktdber)

Medium.com (3) - Maksim Dolgikh (2025): We selected Angular because it is faster than React.
https://itnext.io/we-selected-angular-because-it-is-faster-than-react-8cc8a5e7fc78 (Letdltve:

2025. november)

Microsoft (2024): C# Documentation. https://docs.microsoft.com/en-us/dotnet/csharp
(Letoltve: 2025. oktober)

Mordor Intelligence (2025): Virtual Goods Market Size, Forecast Report.
https://www.mordorintelligence.com/industry-reports/virtual-goods-market (Letoltve: 2025.

oktdber)

Name.com (2025): Domain Registration Services. https://name.com (Letoltve: 2025. oktober)

Perplexity-conversation (2025): Osszefoglalo készitése (Letdltve: 2025. oktober)+

PostgreSQL Global Development Group (2024): PostgreSQL Documentation.
https://www.postgresql.org/docs (Letoltve: 2025. oktober)

posts.tf (2025): Team Fortress 2 Trading Platform. https://posts.tf (Letoltve: 2025. oktober)

Rackforest (2025): VPS Hosting Services. https://rackforest.com (Letoltve: 2025. oktdber)

Ramkrishnan & Gehrke (2003): Database Management Systems.
https://raw.githubusercontent.com/pforpallav/school/master/CPSC404/Ramakrishnan%20-
%?20Database%20Management%20Systems%203rd%20Edition.pdf (Letoltve. 2025

november)

Reddit r/tf2 (1) (2024): Lets do a poll on TF2 player demographics.
https://www.reddit.com/r/tf2/comments/1ejfb56/lets_do_a poll on_tf2 player demographics
_how_old (Letoltve: 2025. oktdber)

Reddit 1/tf2 (2) (2024): T2 User Interface is Horrible.
https://www.reddit.com/t/tf2/comments/1h61nqj/tf2_user_interface is_horrible (Letoltve:

2025. oktober)

Reddit r/tf2 (2025): How to filter for Spells on bp.tf.
https://www.reddit.com/r/tf2/comments/1kziyho/how_to_filter for spells on bptf (Letdltve:
2025. oktober)

96

https://medium.com/@jramcloud1/02-postgresql-performance-tuning-understanding-postgresql-shared-buffers-for-performance-tuning-0a61086edee7
https://medium.com/@jramcloud1/02-postgresql-performance-tuning-understanding-postgresql-shared-buffers-for-performance-tuning-0a61086edee7
https://itnext.io/we-selected-angular-because-it-is-faster-than-react-8cc8a5e7fc78
https://docs.microsoft.com/en-us/dotnet/csharp
https://www.mordorintelligence.com/industry-reports/virtual-goods-market
https://name.com/
https://www.postgresql.org/docs
https://posts.tf/
https://rackforest.com/
https://raw.githubusercontent.com/pforpallav/school/master/CPSC404/Ramakrishnan%20-%20Database%20Management%20Systems%203rd%20Edition.pdf
https://raw.githubusercontent.com/pforpallav/school/master/CPSC404/Ramakrishnan%20-%20Database%20Management%20Systems%203rd%20Edition.pdf
https://www.reddit.com/r/tf2/comments/1ejfb56/lets_do_a_poll_on_tf2_player_demographics_how_old
https://www.reddit.com/r/tf2/comments/1ejfb56/lets_do_a_poll_on_tf2_player_demographics_how_old
https://www.reddit.com/r/tf2/comments/1h61nqj/tf2_user_interface_is_horrible
https://www.reddit.com/r/tf2/comments/1kziyho/how_to_filter_for_spells_on_bptf

Silberschatz (2010): Database System Concepts.
https://www.slideshare.net/slideshow/database-system-concepts-6th-edition-ebook-

pdf/277440767 (Letdltve: 2025. november)

SQ Magazine (2025): Steam Statistics 2025 - Users, Revenue, Top Games, Trends.
https://sqgmagazine.co.uk/steam-statistics (Letoltve: 2025. oktober)

Steam Community (2025): Steamworks Web API Documentation.

https://steamcommunity.com/dev (Letoltve: 2025. oktober)

Varoufakis, Y. (2012): Arbitrage and Equilibrium in Team Fortress 2.
https://gwern.net/doc/economics/2012-varoufakis-teamfortress2arbitrage.html (Letoltve:

2025. oktober)

7.5 Forraskodok

Jelen fejezetben talalhaté néhany olyan kodrészlet az alkalmazas bizonyos részeibdl (pl. kliens
oldali feliiletek, megoldésok, illetve szerveroldali részek), amelyek fontosabb szerepet toltenek

be az alkalmazas soran.

97

https://www.slideshare.net/slideshow/database-system-concepts-6th-edition-ebook-pdf/277440767
https://www.slideshare.net/slideshow/database-system-concepts-6th-edition-ebook-pdf/277440767
https://sqmagazine.co.uk/steam-statistics
https://steamcommunity.com/dev
https://gwern.net/doc/economics/2012-varoufakis-teamfortress2arbitrage.html

7.5.1 Csere-igény keresés kodrészlet

i.Name

archItem in items)
archItem = searchItem;

t.Item dbItem =>
localSearchItem.Defind

|| dbItem.Effect localSearchItem.EF
|1 dbItem.paintDefind
|| dbItem.Killstreak
. IsNullOrEmpty calSearchItem.Killstre

&

r) || dbItem.Kil
. IsNullOrEmpty rchItem.Sheen) || dbItem.Sh
dbItem.IsSelling == archItem.IsSelling

totalCount =

pagedTrad

47. abra - SearchTradesAsync csere-igény keresés — kodrészlet — Forras: Sajat implementdcio

98

7.5.2

Item-selector-facade kodrészlet

itemsEditToTrade =
temsEditForTrade =

(=8

=
= == = Qo
m
1 A

mm Q
o m
A m

o

ditItemIds
archItemIds

AoA A

4]
m
L,

loading

items$ =

itemsLength

itemsToTrade$ = ._itemsToTrade.a

itemsForTrade$ = ._itemsForTrade.a

itemsEditToTraded =

itemsEditForTradet ._itemsEditForTrade.

itemssearchToTrade.a b)s
i earchForTrade.asObservable();

deepEqual (objl:
return JSON.stringify(o

loadItems

luadFdPagn

48. abra - ItemSelectorFacade csere-igény kezeld osztaly — kodrészlet — Forras: Sajat implementdacio

99

onAddEditItem{item: Item) {
currentItems = ._itemsEditToTrade.getWalue();
if (currentItems.length >= 18
.showMaxLimitMessage();

return;
else
exists = currentItems.some{existingItem
.deepEqual(existingltem, item

};

if (lewists) {
itemWithCustomId = {
.. oitem,
customId: (++ -_customEditIdCounter) .tostring(),

._itemsEditToTrade.next([...currentItems, itemWithCustomId]);
.selectedEditItemIds .add(item.id);

onAddSearchItem(item: Item) {
currentItems = ._itemsSearchToTrade.getValue() ;
if (currentItems.length »>= 18
.showMaxLimitMessage();
return;
elze
exists = currentItems.some(existingTtem
.deepEqual (existingTtem, item
1
if (lewdsts) {
itemlWithCustomId = {
.. item,
customId: ++ ._customSearchIdCounter,

._itemsSearchToTrade.next([...currentItems, itemkithCustomId]):
.selectedSearchItemlds . add(item.defindex. tos5tring());

cnCfferItem({item: Item
currentItems = ._itemsOffer.getValue();
if (currentItems.length »>= 18
.showMaxLimitMessage();

return;
else
exists = currentItems.some{existingItem
.deepEqual(existingltem, item

¥;

if (lewists) {
itemWithCustomId = { ...item, customId: ++ ._customIdCounter };
_itemsOffer.next([...currentTtems, itemWithCustomId]);
.selected0fferTtemIds.add(item.id);

7.5.3

49. abra - Kliensoldali csere-igény kezel6 osztaly — kodrészlet — Forras: Sajat implementacio

Item-container kodrészlet

Component,

EventEmitter,

OnChang
Qutput,

aelectur:.
imports: [I
templatelrl:

canModify
showQuantity

electorFaca

50. abra — ItemContainerComponent targy megjelenito elem — kodrészlet — Forras: Sajat implementacio

101

[itemData]="item"
[effectUrl]="item.e
[canDelete]="canlel
[canModify]="canModify"

. ="showQuantity"
[disabled]="disabled"
[borderstyle]="facade.getBorderstyle(item)”
(selectEmitter) lectEmitter.emit({item)

(removeEmitter)}="removeEmitter.emit(item}’

{customizeEmitter)="customizeEmitter.emit{item)"

51. abra - ItemContainerComponent targy megjelenité elem — kodrészlet — Forras: Sajat implementacio

102

