
Kodolányi	János	Egyetem	

Szakdolgozat	

Kovács	Bálint	

Üzemmérnök-Informatikus	Alapképzési	szak	

Budapest	

2025.	 	

Kodolányi	János	Egyetem	

Informatika	Tanszék	

AiFusion	–	Többmodellű	LLM-kollaboráció	alaprendszerének	

tervezése	és	megvalósítása	

Rendszerleírás,	architektúra	és	működésbemutatás	

Konzulens:	Dr.	Pitlik	László	

Készítette:	Kovács	Bálint	

Üzemmérnök-Informatikus	

Alapképzési	szak	

Budapest	

2025.	 	

Kodolányi	János	University	

Department	of	Informatics	

AiFusion:	Design	and	Implementation		

of	a	Core	Framework	for	Multi-Model	LLM	Collaboration	

System	Description,	Architecture,	and	Operational	Demonstration	

Supervisor:	Dr.	László	Pitlik	

Author:	Bálint	Kovács	

Computer	Science	Operational	Engineering		

Bachelor’s	Degree,	

Budapest	

2025.	

	 1.	

Tartalomjegyzék	

KIVONAT	 6

ABSTRACT	 7

1.	BEVEZETÉS	 8

1.1.	A	szakdolgozat	témájának	felvezetése	 8

1.2.	Problémafelvetés	és	célkitűzés	 10

1.3.	A	kutatás	részfeladatokra	történő	tagolása	 11

1.4.	Célcsoport	 12

1.4.1.	Mesterséges	intelligenciával	foglalkozó	kutatók	és	hallgatók	 12

1.4.2.	Szoftverfejlesztők	és	üzemmérnök-informatikusok	 12

1.4.3.	Szakértők	és	döntéshozók	 12

1.4.4.	IT	döntéshozók	és	projektmenedzserek	 12

1.5.	Hasznosság	 13

1.5.1.	Megbízhatóság	növelése	 13

1.5.2.	Objektív	modellválasztás	támogatása	 13

1.5.3.	Kutatási	és	oktatási	platform	 13

1.5.4.	Költség-	és	teljesítményelemzés	 14

1.5.5.	Referenciaadatok	validálása	és	a	váratlan	hasznosság	 16

1.6.	A	dolgozat	kialakításának	áttekintése	 16

1.6.1.	Szerkezeti	felépítés	 16

1.6.2.	Stílusjegyek,	formázás	 17

1.6.3.	A	szakdolgozat	fókuszpontjai	és	elhatárolása	 17

2.	SZAKIRODALMI	HÁTTÉR	 19

2.1.	Nagy	nyelvi	modellek	működése	és	az	embedding	alapelvei	 19

	 2.	

2.2.	Tokenizáció	és	a	szöveggenerálás	logikája	 20

2.3.	Kreativitás	vs.	determinizmus:	a	temperature	paraméter	szerepe	 22

2.4.	Kollektív	AI-megközelítés	és	előnyei	 23

2.5.	Etikai	és	megbízhatósági	kihívások	a	LLM-eknél	 25

2.5.1.	Bias	 25

2.5.2.	Hallucináció	 26

2.5.3.	A	hallucináció	és	a	bias	enyhítése	 27

2.6.	Az	AiFusion	architektúra	a	kollektív	AI	kontextusában	 28

2.6.1.	A	lekérdezés	menete,	frontend	 29

2.6.2.	Backend	 29

2.7.	A	tantárgyak	és	a	dolgozat	témájának	összefüggései	 30

2.7.1.	Matematikai	alapok	 30

2.7.2.	Adatszerkezetek	és	algoritmusok	 30

2.7.3.	A	jog	szerepe	a	modern	társadalmakban	 31

2.7.4.	Adatbázisok	 31

2.7.5.	Az	Elektronika	fizikai	alapjai	és	az	Elektronikus	áramkörök	 31

2.7.6.	Felhasználói	interfészek	és	vizualizáció	 32

2.7.7.	Hálózatok	és	számítógép	architektúrák	 32

2.7.8.	Informatikai	védelem	és	biztonság	 32

2.7.9.	Operációs	rendszerek	 33

2.7.10.	Programozás	 33

2.7.11.	Programozási	alapelvek	és	módszertanok	 33

2.7.12.	Rendszermodellezés	 34

2.7.13.	Rendszertervezés	 34

2.7.14.	Szoftverarchitektúrák	 34

2.7.15.	Szoftvertesztelés	 35

2.7.16.	Szoftverüzemeltetés	 35

2.7.17.	Komplex	társadalomtudományi	ismeretek	 35

2.7.18.	Európai	civilizáció	és	identitás	 36

2.7.19.	Emberi	viselkedés	és	kommunikáció	 36

	 3.	

2.7.20.	Vállalati	gazdaságtan	 37

2.7.21.	Vezetési	és	vállalkozási	ismeretek	 37

2.7.22.	Innovatív	információs	és	kommunikációs	technológiák	az	IT-biztonság	kapcsán

	 37

2.7.23.	IT-biztonsági	fejlesztések	minőség-	és	projektmenedzsmentje	 38

2.7.24.	Mesterséges	intelligenciák	az	IT-biztonság	területén	 38

2.7.25.	Tudásmenedzsment	az	IT-biztonság	területén	 38

2.8.	A	szakirodalmi	háttér	összegzése	 39

3.	SAJÁT	FEJLESZTÉS	 40

3.1.	Követelmények	és	Use-case	 40

3.1.1.	Rendszerkövetelmények	 40

3.1.1.1.	Több	modell	egyidejű	bevonása	 40

3.1.1.2.	Integráció	különböző	AI	szolgáltatókkal	 41

3.1.1.3.	Erőforrás-	és	költségfelügyelet	 41

3.1.1.4.	Felhasználói	felület	és	UX	követelmények	 42

3.1.1.5.	Kutatástámogató	funkció,	a	batch	feldolgozás	 42

3.1.2.	Use-case,	vagyis	Felhasználási	eset	 42

3.2.	Rendszerfelépítés	és	implementáció	 45

3.2.1.	A	platform	elnevezése,	logó,	domain,	védjegy	 45

3.2.2.	Fejlesztői	környezet	 46

3.2.2.1.	Ubuntu	Server	 46

3.2.2.2.	macOS	 46

3.2.3.	Architektúra	áttekintése,	a	Master–Slave–Judge	modell	 46

3.2.4.	Adatáramlás	és	komponensek	együttműködése	 47

3.2.5.	Backend	architektúra	 48

3.2.5.1.	Modulstruktúra	és	adapterek	 48

3.2.5.2.	API	végpontok	és	hitelesítés	 50

3.2.6.	Frontend	architektúra	 52

3.2.6.1.	Kommunikáció	a	backenddel	 54

3.2.6.2.	Párhuzamos	lekérdezések	és	bírói	logika	 55

	 4.	

3.2.7.	Batch	Runner	modul	 56

3.2.8.	Nevezéktani	konvenciók	 58

3.2.9.	A	Python	kódban	alkalmazott	nevezéktan	 59

3.2.10.	Biztonság	és	kulcskezelés	 59

3.2.11.	A	jelenlegi	megoldás	biztonsági	korlátai	 60

3.2.12.	Naplózás	és	adatvédelem	 61

3.2.13.	Jövőbeli	fejlesztési	irányok	 61

3.2.13.1.	Működési	logikák	kibővítése	 61

3.2.13.2.	Felhasználói	felület	és	UX	fejlesztések	 62

3.2.13.3.	Infrastruktúra	és	skálázhatóság	 62

3.2.13.4.	Jogi	háttér	szerkezete	 63

3.2.13.5.	Adatbázis	kapcsolat	 63

3.3.	Kismintás	tesztelés	 64

3.3.1.	Áttekintés,	bevezetés	 64

3.3.2.	A	Batch	Runner	használata	 65

3.3.3.	A	tesztkérdések	és	azok	lekérdezése	 66

3.3.4.	A	kollaborációs	partnerek	és	a	JUDGE	kiválasztása	 66

3.3.4.1.	A	Pareto-triádok	kiválasztása	 67

3.3.4.2.	Példa	a	Pareto-dominanciára	 69

3.3.4.3.	A	Pareto-szűrő	és	annak	használata	 70

3.3.4.4.	A	Pareto-triádok	felsorolása	 71

3.3.5.	A	kimeneti	eredmények	tárolása,	kiértékelése	 72

3.3.6.	A	teszt	bemenetét	és	részeredményeit	tartalmazó	Excel	tábla	lapjai	 72

4.	VITA	 76

4.1.	A	tesztelés	módszertani	korlátai	 76

4.2.	A	"GPT-5"	modellek	torzító	hatása	az	összehasonlíthatóságra	 76

4.3.	A	referencia	válaszok	érvényességének	problémája	 77

4.4.	A	használhatóság	és	a	működőképesség	értékelése	 77

4.5.	Rokonkutatások	és	a	platform	fejlesztésének	szinergiái	 78

	 5.	

5.	ÖSSZEGZÉS,	ÖSSZEFOGLALÁS	 79

6.	JEGYZÉKEK,	KIEGÉSZÍTÉSEK,	MEGJEGYZÉSEK	 80

6.1.	IRODALOMJEGYZÉK	 80

6.2.	A	felhasznált	irodalom	attribútumainak	elemzése	 85

6.3.	A	3.sz.	táblázatban	szereplő	sorszámok	hivatkozás-kapcsolata	 88

6.4.	Ábrajegyzék	 90

6.5.	Táblázatjegyzék	 91

6.6.	Rövidítésjegyzék	 92

6.7.	Fájlmellékletek	jegyzéke	 94

	

	 	

	 6.	

Kivonat	

A	 dolgozat	 az	 AiFusion	 platformot	 mutatja	 be,	 amely	 több	 nagy	 nyelvi	 modell	

együttműködését	 (master–slave–judge)	 használja	 annak	 vizsgálatára,	 hogy	 a	 kollektív	

válaszadás	 miként	 hat	 a	 megbízhatóságra,	 költségre	 és	 késleltetésre.	 A	 prototípus	

Python/Flask	alapú	backendből,	React	webes	felületből	és	konzolos	batch-runnerből	áll;	

token-alapú	hozzáférés-védelemmel	és	 részletes	 token/költség-naplózással.	A	 fókusz	a	

rendszerarchitektúra	és	a	megvalósítás;	a	bemutatott	kismintás	mérések	demonstrációs	

célúak.	Általános,	statisztikailag	megalapozott	teljesítményjavulásra	nem	teszünk	állítást;	

ugyanakkor	előzetes	megfigyeléseink	szerint	a	bíró-logika	képes	saját	korábbi	válaszával	

szemben	 is	 elfogulatlanul	 dönteni,	 és	 a	 kollaboráció	 költség-/késleltetés-

kompromisszumokkal	 jár.	 Hozzájárulások:	 moduláris	 orkesztráció,	 bíró-prompting	

munkafolyamat,	Pareto-alapú	 triádválasztás,	valamint	 reprodukálható	kötegelt	 futtatás	

mérési	 adatrögzítéssel.	 Jövőbeli	 munka:	 backend-oldali	 orkesztráció,	 gazdagabb	

mérőszámok	és	a	hallucináció/bias	mérséklésének	célzott	vizsgálata.	 	

	 7.	

Abstract	

This	thesis	presents	the	AiFusion	platform,	which	orchestrates	the	collaboration	of	

multiple	 large	 language	 models	 (master–slave–judge)	 to	 examine	 how	 collective	

answering	affects	reliability,	cost,	and	latency.	The	prototype	comprises	a	Python/Flask	

backend,	a	React-based	web	interface,	and	a	console	batch	runner,	and	includes	token-

based	access	control	with	detailed	token/cost	logging.	The	focus	is	on	system	architecture	

and	implementation;	the	reported	small-sample	measurements	are	demonstrative.	We	do	

not	 make	 a	 general,	 statistically	 substantiated	 claim	 of	 performance	 improvement;	

however,	preliminary	observations	indicate	that	the	judge	logic	can	adjudicate	impartially	

even	against	its	own	prior	answer,	and	that	collaboration	entails	cost/latency	trade-offs.	

Contributions	include	modular	orchestration,	a	judge-prompting	workflow,	Pareto-based	

triad	selection,	and	reproducible	batch	execution	with	measurement	logging.	Future	work	

includes	 backend-side	 orchestration,	 richer	 evaluation	 metrics,	 and	 a	 targeted	

investigation	into	mitigating	hallucination	and	bias.	 	

	 8.	

1.	Bevezetés	

1.1.	A	szakdolgozat	témájának	felvezetése	

A	mesterségesintelligencia-kutatásban	az	utóbbi	években	kiemelt	figyelmet	kaptak	

a	nagy	nyelvi	modellek	(Large	Language	Model	–	a	továbbiakban:	LLM).	E	modellek	–	mint	

például	 az	 OpenAI	 által	 fejlesztett	 ChatGPT	 vagy	 az	 Anthropic	 Claude	 –	 jelentős	

előrelépést	 hoztak	 a	 különböző,	 korábban	 ember	 által	 végzett	 feladatok	

„felgyorsításában”,	automatizálásában	(Noy	&	Zhang,	2023),	(Dell’Acqua,	és	mtsai.,	2023).	

Ez	 a	 trend	 a	 hazai	 szakirodalomban	 is	 megjelent,	 ahol	 a	 modelleket	 már	 specifikus,	

magyar	 nyelvű	 „szakértői	 rendszerek”	 (pl.	 tűzvédelmi)	 létrehozására	 is	 alkalmazzák	

(Karsa,	2024)	

Az	 első	 gondolat	 a	 nagy	 nyelvi	 modellek	 kollaborációs	 vagy	 konzíliumos	

alkalmazásáról	 egy,	 a	 konzulensem	 és	 tanszékvezetőm	 Dr.	 Pitlik	 László	 által	 írt	 levél	

értelmezése	 során	 vetődött	 fel.	 A	 levélben	 a	 szakdolgozat	 leadási	 határidejét	 kellett	

megadni	 a	 válaszlevél	 tárgyában,	 pontosan,	 megadott	 szabályok	 szerint.	 A	 levelet	 a	

ChatGPT	 és	 a	 Claude	 aktuális	 legfrissebb,	 webes	 felületen	 elérhető	 verziójával	 is	

megválaszoltattam.	 A	 ChatGPT	 hibásan	 értelmezte	 a	 levelet,	 a	 Claude	 azonban	 pontos	

választ	adott.		

A	második	 eset	 szintén	 Dr.	 Pitlik	 Lászlóhoz	 köthető:	 az	 egyik	 órai	 feladat	 során	

valahogy	szóba	került	egy	találós	kérdés,	amelyet	hibásan	értelmezett	valamelyik	nagy	

nyelvi	 modell.	 A	 találós	 kérdés	 így	 szólt:	 „Hogyan	 ejtsünk	 le	 egy	 friss	 tojást	 a	 szilárd	

betonra	úgy,	hogy	az	ne	törjön	össze?”.	A	kérdésben	az	„az”	szó	értelmezése	félrevezető,	

mivel	 az	utolsó	 tárgy,	 amelyre	 a	 szó	 rámutat	 a	beton,	 tehát	nem	a	 tojás	összetörésére	

irányul	a	kérdés,	hanem	a	betonéra.	Ebből	következően	a	helyes	válasz:	a	tojás	bárhogyan	

leejthető,	a	beton	nem	fog	összetörni	a	tojástól.	Ezen	találós	kérdést	több	elérhető	nyelvi	

modellnek	is	 feltettem,	viszont	újra	csak	egy	részük	volt	képes	helyesen	megválaszolni	

azt.	 Innentől	 kezdve	 elkezdtem	 gyűjteni	 az	 ismert	 válasszal	 rendelkező	 fejtörőket	 és	

találós	kérdéseket,	majd	azokat	több	nyelvi	modellel	is	megválaszoltattam	és	felfigyeltem	

arra,	hogy	általában	legalább	egy	LLM	mindig	helyesen	oldotta	meg	a	feladatokat.	Innen	

következett	a	feladat:	összeköttetést	kell	teremtenem	a	nyelvi	modellek	között,	hogy	azok	

erősségeit	kihasználva	a	lehető	legmagasabb	helyes	válaszarányt	kaphassam.	

	 9.	

Az	első	kísérletek	során	kézi	összeköttetést	hoztam	létre	a	ChatGPT,	a	Claude	és	a	

DeepSeek	rendszerek	között.	Az	összeköttetés	a	kezdeti	promptok	megadása	után,	a	LLM-

ek	 válaszainak	 kézi	 továbbítását	 jelentette	 meghatározott	 szabály	 szerint	 a	 soron	

következő	LLM	részére,	 így	gyakorlatilag	a	LLM-ek	egymással	kommunikálni	 tudtak.	A	

kísérlet	 során	 különböző	 logikai	 fejtörőket	 kellett	 megoldaniuk	 a	 nyelvi	 modelleknek	

összefogással.	A	rövid	kísérletezés	során	a	LLM	kollaboráció	akkor	is	helyes	választ	adott,	

ha	egy	vagy	több,	a	kérdés	megválaszolásában	résztvevő	LLM	válasza	hibás	volt.	A	LLM	

kollaborációk	 egyszerűbb	 tanulmányozásának	 céljából	 elkezdtem	építeni	 a	 platformot,	

melynek	neve	AiFusion	lett.	A	konzulensem	által	felügyelt,	mesterséges	intelligenciával	

és	 annak	 alkalmazásaival	 is	 foglalkozó	 „Magyar	 Internetes	 Agrár/Alkalmazott	

Informatikai	 Újság	 (MIAÚ)	 kutatási	 portál”	 (MIAÚ,	 2025)	 biztosította	 azt	 a	 hátteret,	

amelyben	a	felvetődött	ötletek	kidolgozásra	kerülhetettek.	

Az	AiFusion	 egy	 olyan	 platform,	 amely	 több	 különböző	mesterségesintelligencia-

modell	 együttműködésével	 ad	 választ	 a	 felhasználó	 kérdéseire.	 A	 rendszer	 jellemzően	

egyszerre	párhuzamosan	több	nagy	nyelvi	modellt	von	be	a	válaszadásba,	majd	a	kapott	

válaszokat	 kiértékeli.	 A	 kapott	 válaszok	 egymásra	 épülnek,	 az	 AiFusion	 rendszerben	

meghatározott	struktúra	szerint,	így	a	nagy	nyelvi	modellek	válaszai	egymásra	hatással	

vannak,	ezzel	egyfajta	kollektív	(kollaborációs),	AI-válaszadást	valósítva	meg.	Az	AiFusion	

platform	célja,	hogy	az	alábbi	kérdésekre	segítse	a	válaszadást:	

- Több	LLM-től	 származó	 válasz	 egyesítésével	 jobb	minőségű	 és	megbízhatóbb	

választ	kapunk,	mintha	csupán	egyetlen	modellre	támaszkodnánk?	

- Több	 nyelvi	 modell	 összesített	 válaszköltsége	 és	 válaszminősége	 milyen	

arányban	áll	egy	nagy	válaszköltségű	LLM-hez	viszonyítva?	

- Több	nyelvi	modell	összesített	válaszideje	és	válaszminősége	milyen	arányban	

áll	egy	nagy	válaszidejű	LLM-hez	viszonyítva?	

- A	különböző	LLM	kollaborációk	válaszidejei	és	válaszminőségei	milyen	

arányban	állnak	egymáshoz	képest?	

Az	 AiFusion	 alapötlete	 párhuzamba	 állítható	 a	 “wisdom	 of	 crowds”	 (tömegek	

bölcsessége)	elvével,	miszerint	több	független	vélemény	kombinálása	vezethet	pontosabb	

eredményhez	(Surowiecki,	2004.)	.	Hasonló	elv	érvényesül	a	gépi	tanulásban	az	„ensemble	

	 10.	

módszereknél”	 is,	 ahol	 több	 modell	 együttes	 döntése	 javíthatja	 az	 előrejelzések	

pontosságát	(Dietterich	T.	G.,	2000)	.	

Az	 AiFusion	 rendszer	 jelenlegi	 prototípusa	 három	 fő	 komponensből	 áll:	 egy	

szerveroldali	 háttérrendszerből,	 egy	 webes	 frontendből	 az	 egyedi	 kérdések	 és	 LLM	

konfigurációk	teszteléséhez,	valamint	egy	batch	feladatok	futtatására	alkalmas	konzolos	

alkalmazásból.	 A	 backend	 egy	 Python	 nyelven,	 Flask	 keretrendszerrel	 készült	

Alkalmazásprogramozási	Felület	(Application	Programming	Interface	–	a	továbbiakban:	

API)	 szerver,	 amely	 kezeli	 a	 beérkező	 kérdéseket	 és	 továbbítja	 azokat	 a	megfelelő	 AI	

modellhez,	majd	a	kapott	választ	visszaküldi	a	frontendre.	A	webes	frontend	egy	React	

(egy	JavaScript	programkönyvtár	felhasználói	felületek	építéséhez)	alapú	felület,	amely	

lehetővé	teszi	a	felhasználónak	a	modellek	kiválasztását,	a	paraméterek	(pl.	kreativitás,	

maximális	token-hossz)	beállítását,	a	kérdés	beküldését,	valamint	a	párhuzamosan	futó	

modellek	 válaszainak	 áttekintését.	 A	 konzolos	 alkalmazás	 a	 backendhez	 hasonlóan	

Pythonban	 íródott	 és	 Flask	 keretrendszerrel	 készült,	 feladata	 a	 kérdésadatbázisok	

automatizált	 kollaborációs	 megválaszolása	 egy	 kimeneti	 fájlba.	 A	 rendszer	 jelenlegi	

implementációjában	a	“bíró”	logika	kísérleti	jelleggel	a	frontenden	valósul	meg:	a	kliens	

program	 gyűjti	 össze	 a	 kiválasztott	 modellek	 válaszait,	 és	 egy	 újabb	 API	 hívással	 egy	

kiválasztott	bíró-LLM-nek	küldi	el	azokat	kiértékelésre.	E	koncepció	későbbi	verzióiban	

már	 egy	 általánosabb,	 backend	 oldali	 orkesztrációs	 modul	 is	 kialakítható	 a	 modellek	

együttműködésének	kezelésére.	

1.2.	Problémafelvetés	és	célkitűzés	

A	 nagy	 nyelvi	 modellek	 egyedi	 használatának	 komoly	 korlátai	 vannak,	 amelyek	

korlátozzák	 a	 rájuk	 épülő	 rendszerek	 megbízhatóságát.	 Az	 egyik	 ismert	 jelenség	 a	

„hallucináció”,	 amikor	 a	 modell	 valósnak	 tűnő,	 de	 tényszerűen	 hibás	 vagy	 kitalált	

információt	generál	 (Ji	Z.	 ,	 és	mtsai.,	 [25.]	Survey	of	Hallucination	 in	Natural	Language	

Generation,	 2023).	 Ezen	 túlmenően	 gyakori	 probléma	 a	 következetlenség	 is:	 a	modell	

válaszai	eltérhetnek	egymástól	azonos	kérdés	többszöri	lekérdezésekor,	vagy	érzékenyen	

függhetnek	a	kérdés	megfogalmazásától.	A	LLM-ek	zárt	doboz	jellegű	működése	miatt	a	

felhasználó	 sokszor	 nem	 kap	 visszajelzést	 a	 válasz	 bizonyosságáról	 sem	 –	 a	 generált	

szöveg	magabiztos	stílusa	ellenére	a	háttérben	„nincs	garancia	arra,	hogy	az	állítás	igaz”	

(Bang,	 és	mtsai.,	 2023).	 Ezek	 a	 kihívások	 együttesen	 azt	 eredményezik,	 hogy	 egyetlen	

	 11.	

modell	 kimenetére	 hagyatkozva	 a	 felhasználó	 nehezen	 tudja	 megítélni	 a	 kapott	

információ	hitelességét	és	pontosságát.	

Az	AiFusion	rendszeren	keresztül	ezen	problémák	megoldását	kívánom	kutatni,	a	

kollektív	válaszadás	segítségével.	Az	az	elképzelés,	hogy	 több	különböző	LLM	egyidejű	

alkalmazásával	 és	 a	 válaszaik	 egyesítésével	 a	 modellek	 komplementer	 tudását	 és	

erősségeit	 ki	 lehet	 aknázni.	 Különböző	 modellek	 eltérő	 tréningadatokon	 és	

architektúrával	 tanulnak,	 így	 hajlamosak	 különféle	 hibákra	 és	 tévedésekre	 -	 egy	 adott	

kérdésre	 egyik	 modell	 pontosabb,	 míg	 egy	 másik	 kreatívabb	 választ	 adhat.	 Ha	 ezen	

válaszokat	 egy	 magasabb	 szintű	 algoritmus	 (jelen	 esetben	 egy	 bíró	 LLM)	 értékeli	 és	

kombinálja,	az	remélhetőleg	kiszűri	az	egyedi	modellek	tévedéseit	és	növeli	a	végső	válasz	

megbízhatóságát.	 E	 szakdolgozat	 központi	 célkitűzése	 ennek	 a	 koncepciónak	 a	

megvalósítása:	egy	olyan	rendszer	tervezése	és	implementálása,	amely	több	LLM	együttes	

használatával	 megbízhatóbb	 választ	 ad	 a	 felhasználói	 kérdésekre,	 mint	 bármelyik	

résztvevő	modell	önmagában.		

1.3.	A	kutatás	részfeladatokra	történő	tagolása	

A	kollaborációs	válaszadás	kutatását	a	három	fő	egységre	tagoltam:	

1. A	teszteléshez	szükséges	platform	alapjainak	megteremtése.	

2. A	kollaborációs	válaszadás	tesztelése,	a	kollaborációs-struktúrák	

finomhangolása,	lehetőleg	külső	felhasználók	(egyetemek,	tanszékek)	

bevonásával,	majd	a	válaszok	alapszintű	kiértékelése.	

3. A	kollaborációs	válaszok	mintázatának	tudományos	kiértékelése,	amennyiben	a	

mintázatok	arra	érdemesnek	tekinthetőek.		

A	jelenlegi	dolgozatban	a	kutatás	első	fázisát	taglaljuk,	vagyis	a	dolgozat	a	platform	

működésére	 fókuszál.	 A	 dolgozatban	 található	 kismintás	 tesztelés	 nem	 a	 kollaboráció	

minőségének	megítélését	szolgálja,	hanem	a	platform	működését	hivatott	demonstrálni.	

	

	

	

	 12.	

1.4.	Célcsoport	

A	 jelen	 szakdolgozat	 elsősorban	 az	 alábbi	 csoportok	 számára	 lehet	 releváns	 és	

hasznos:	

1.4.1.	Mesterséges	intelligenciával	foglalkozó	kutatók	és	hallgatók		

Azok	számára,	akiket	érdekel	a	nagy	nyelvi	modellek	(LLM-ek)	kollaborációjának	

lehetősége,	az	ensemble	módszerek	alkalmazása	a	megbízhatóság	növelésére,	valamint	az	

ilyen	 rendszerek	 tesztelésének	 módszertana.	 Az	 AiFusion	 platform	 bemutatása	

betekintést	 nyújt	 egy	 konkrét	megvalósításba	 és	 a	 felmerülő	 kihívásokba	 (pl.	 modell-

összehasonlíthatóság,	 referenciaadatok	 minősége).	 Mivel	 a	 rendszer	 tömeges	 „LLM	

ranking”-ként	is	funkcionál,	a	különböző	LLM-ek	gyors	összehasonlíthatóságát	is	segítheti	

a	platform.	

1.4.2.	Szoftverfejlesztők	és	üzemmérnök-informatikusok		

Azok	 számára,	 akik	 gyakorlati	 példát	 keresnek	 modern	 webes	 architektúrák	

(Python/Flask	backend,	React	frontend),	API	integráció	(több	LLM	szolgáltató	egységes	

kezelése)	és	automatizált	tesztelési	keretrendszerek	(batch	runner)	megvalósítására.	A	

dolgozat	 részletesen	bemutatja	az	architektúrát	 (3.	 fejezet)	és	az	 implementáció	 során	

felmerült	gyakorlati	szempontokat	(pl.	biztonság,	nevezéktan).	

1.4.3.	Szakértők	és	döntéshozók	

	Az	 AiFusion	 platform	 hasznos	 lehet	 bármely	 területen,	 ahol	 precíz,	 megbízható	

válaszokra	van	szükség	komplex	kérdésekben.	A	rendszer	segíthet	eldönteni,	hogy	egy	

adott	 szakterület	 kérdéskorpuszára	 melyik	 LLM	 vagy	 LLM-kollaboráció	 adja	 a	

legalkalmasabb	válaszokat,	lehetővé	téve	a	legmegfelelőbb	eszköz	kiválasztását	az	adott	

domain	specifikus	feladataira.	Ez	különösen	értékes	lehet	olyan	területeken,	mint	a	jog,	az	

orvostudomány,	a	pénzügy	vagy	a	mérnöki	tudományok.	

1.4.4.	IT	döntéshozók	és	projektmenedzserek		

	Bár	a	dolgozat	jelen	fázisban	nem	tesz	állítást	a	teljesítményjavulásról,	betekintést	

nyújthat	a	többmodellű	megközelítésekben	rejlő	potenciálba	és	az	ezzel	járó	költség-	és	

	 13.	

komplexitásbeli	 kompromisszumokba.	 A	 „4.	 Vita”	 fejezetben	 tárgyalt	 módszertani	

korlátok	tanulságosak	lehetnek	hasonló	rendszerek	bevezetésekor.	

A	dolgozat	technikai	mélysége	miatt	a	szélesebb	laikus	közönség	valószínűleg	nem	

tartozik	a	közvetlen	célcsoportba.	

1.5.	Hasznosság	

Az	 AiFusion	 platform	 és	 a	 jelen	 szakdolgozatban	 bemutatott	 kutatás	 több	

szempontból	 is	 hasznos	 lehet	 a	 „1.4	 Célcsoport	 fejezetben”	 azonosított	 szereplők	

számára:	

1.5.1.	Megbízhatóság	növelése	

A	 platform	 alapvető	 célja	 annak	 vizsgálata,	 hogy	 a	 kollektív	 válaszadás	 („2.4	

Kollektív	 (ensemble)	 AI-megközelítés”)	 révén	 csökkenthetők-e	 az	 egyes	 LLM-ekre	

jellemző	korlátok,	mint	a	hallucináció	és	a	bias	(„2.5	Etikai	és	megbízhatósági	kihívások...	

„).	 Ha	 ez	 igazolható,	 az	 AiFusion	 (vagy	 hasonló	 rendszerek)	 hozzájárulhatnak	 a	

megbízhatóbb	MI-alapú	válaszok	generálásához	kritikus	területeken	is.	

1.5.2.	Objektív	modellválasztás	támogatása	

A	platform	lehetővé	teszi	különböző	LLM-ek	és	kollaborációs	sémák	szisztematikus	

tesztelését	és	összehasonlítását	(„3.3.	Kismintás	tesztelés”).	Ez	segítheti	a	szakértőket	és	

döntéshozókat	 abban,	 hogy	 adatvezérelt	 módon	 válasszák	 ki	 a	 saját	 specifikus	

kérdéskörükre	 legalkalmasabb	modellt	vagy	modellkombinációt,	ahelyett,	hogy	csupán	

egyetlen,	általános	célú	modellre	hagyatkoznának.	

1.5.3.	Kutatási	és	oktatási	platform	

Az	AiFusion	 nyílt	 architektúrája	 (3.	 fejezet)	 és	 automatizált	 tesztelési	 képességei	

(„3.2.7.	 Batch	 Runner	 modul”)	 kísérleti	 platformként	 szolgálhatnak	 további	 MI	

(Mesterséges	 Intelligencia)-kutatásokhoz	 (pl.	 új	 kollaborációs	 stratégiák,	 prompt	

engineering	 technikák	 tesztelése)	 és	 az	 oktatásban	 is	 felhasználható	 a	 modern	 LLM	

technológiák	gyakorlati	bemutatására.	

	 14.	

1.5.4.	Költség-	és	teljesítményelemzés	

A	 rendszer	 részletes	 naplózása	 („3.2.12.	 Naplózás	 és	 adatvédelem”,	 „3.3.5.	 A	

kimeneti	 eredmények	 tárolása,	 kiértékelése„)	 lehetővé	 teszi	 a	 különböző	modellek	 és	

kollaborációk	költségének	és	válaszidejének	elemzését.	Ez	segíthet	az	optimális	költség-

teljesítmény	arány	megtalálásában	különböző	felhasználási	esetekre.		

A	 projekt	 eddigi	 fejlesztése	 során	 az	 alábbi	 idő	 és	 pénzeszközök	 kerültek	

felhasználásra:	

• API	hívások	költségei:	35	amerikai	dollár	(United	States	Dollar	–	a	továbbiakban:	

USD)	

• ChatGPT	előfizetés	díja:	20	USD	/	hó,	durván	6	hónapnyi	előfizetés	Þ	120	USD	

• aifusion.hu	domain	bejegyzésének	díja:	2	286,-	magyar	forint	(Hungarian	Forint,	

a	továbbiakban:	HUF)	

• Fejlesztői	MacBook	Air	M1	megvásárlása:	170	000.-	HUF	

• Durván	150-200	gép	előtt	töltött	„munkaóra”	

Az	AiFusion	rendszer	 fejlesztésével	nem	a	közvetlen	profitszerzés	a	cél,	hanem	a	

kifejlesztett	 technológia	 egyéb,	 saját	 projektjeimbe	 való	 beépítése	 és	 a	 technológia	

fejlesztése	során	felhalmozott	tudásbázis	későbbi	hasznosítása.	

A	 platform	 a	 következő	 fejlesztési	 fázisában	 nyilvánosan	 elérhetővé	 kell	 váljon	

kutatási	és	oktatási	célból.	A	nyilvános	eléréshez	az	alábbi	költségbecslést	végzem:	

• Az	AiFusion	platform	ezen	szakaszához	nem	keletkezik	pénzügyi	

tranzakció	az	„ügyfelek”	és	a	platform	között.	Vagy	a	platform	saját	API	

kulcsait	használja	a	rendszer	(vagyis	a	platform	üzemeltetője	

finanszírozza	az	API	hívásokat	a	LLM	szolgáltatók	felé),	vagy	a	

felhasználóknak	rendelkezniük	kell	saját	API	kulcsokkal	közvetlenül	a	

LLM	szolgáltatók	felé.	Tehát	az	AiFusion	platform	sem	közvetlen	

szolgáltatóként	sem	szolgáltatásközvetítőként	nincs	jelen	a	piacon	(lásd:	

„3.2.13.4.	Jogi	háttér	szerkezete”).	

• Ebben	az	esetben	az	„ügyfelek”	felé	pusztán	adminisztratív	kötelezettségei	

vannak	az	üzemeltetőnek,	tehát	leginkább	az	adatkezelési	és	felhasználási	

	 15.	

feltételekkel	kell	foglalkozni.	Korábbi	munkatapasztalatom	szerint	egy	

nemzetközi	ügyvédi	irodával	egy	ilyen	jellegű	szerződést	meg	lehet	íratni	

1	000	EUR	környékén.	

• Mivel	a	platform	részéről	ezen	a	ponton	már	meg	kell	nevezni	azt	a	

célszerűen	jogi	személyt,	aki	a	szolgáltatást	nyújtja,	valamelyik	megfelelő	

TEÁOR-ral	(Tevékenységek	Egységes	Ágazati	Osztályozási	Rendszere)	

rendelkező	cégem	portfoliójához	adnám	az	AiFusion	platform	

üzemeltetését.	

• A	rendszer	ezen	a	ponton	már	publikus	eléréssel	rendelkezik.	Vagy	saját	

szervert	és	biztonsági	protokollt	alkalmazunk,	vagy	egy	felhőszolgáltatóba	

költöztetjük	a	rendszert	(pl.	Amazon	Web	Services	–	a	továbbiakban:	AWS).	

Mivel	a	biztonsági	rések	foltozása	és	a	hackertámadások	elhárítása	állandó	

feladatot	adna	saját	szerver	esetén,	érdemesebbnek	gondolom	a	

szolgáltatást	pl.	AWS-be	költöztetni.	Az	AWS	áráról	nincs	pontos	

kalkulációm.	

• A	szükséges	frontendi	fejlesztés	szubjektív	becslésem	alapján	200-250	

munkaóra.	

• A	backend	fejlesztése	szubjektív	becslésem	szerint	legalább	100	munkaóra.	

• Ezen	a	ponton	szükségesnek	látom	legalább	egy	magyarországi	védjegy	

bejegyzése	az	esetleges	jogviták,	téves	Facebook	tiltások	gördülékenyebb	

kezelése	céljából.	A	magyar	védjegy	bejegyzésének	költsége	egy	áruosztály	

esetén	jelenleg	„81	000.-	Ft	+	ügyvédi	költség”	(az	ügyvédi	költség	korábbi	

védjegybejegyzéseim	alapján	plusz	60-80	ezer	forint)	([27.]	Magyar,	uniós	

és	nemzetközi	védjegy	díjak,	2025).	

A	 megfelelő	 publikus	 tesztelést	 követően	 lehetne	 megállapítani	 a	 rendszer	

működésének	 tényleges	 hasznosságát	 (amely	 még	 nem	 bizonyított!),	 a	 rendszer	

piacképes	 szolgáltatásait	 leírni	 és	 azok	 értékét	 felbecsülni.	Mivel	 szerintem	 (megfelelő	

hasznosság	 esetén)	 a	 rendszert	 legfeljebb	 egy	 szűk	 réteg	 használná,	 amennyiben	 a	

közvetlen	 profitszerzés	 lenne	 a	 cél,	 reálisabbnak	 látom	 a	 kifejlesztett	 technológiák	

(algoritmusok,	 módszertanok)	 értékesítését	 más,	 nagy	 nyelvi	 modellekkel	 foglalkozó	

piaci	szereplők	felé.	

	 16.	

	

1.5.5.	Referenciaadatok	validálása	és	a	váratlan	hasznosság	

Ahogy	 a	 „4.	 Vita”	 fejezetben	 is	 kiemelésre	 került,	 a	 kollaboratív	 válaszok	

konzisztenciájának	elemzése	potenciálisan	segíthet	a	meglévő	tesztadatbázisok	hibáinak	

vagy	kétértelműségeinek	feltárásában.	

1.6.	A	dolgozat	kialakításának	áttekintése	

Az	 alábbiakban	 először	 a	 szakdolgozat	 szerkezeti	 felépítését	 ismertetem,	 majd	

bemutatom	 azokat	 a	 stílus-	 és	 formázási	 elveket,	 illetve	 fókuszpontokat	 és	

elhatárolásokat,	amelyek	a	dolgozat	további	fejezeteinek	kialakítását	meghatározzák.	

1.6.1.	Szerkezeti	felépítés	

A	dolgozat	hátralévő	része	az	alábbiak	szerint	épül	fel:	

Az	 2.	 fejezet	 áttekinti	 a	 témához	 kapcsolódó	 elméleti	 és	 szakirodalmi	 hátteret.	

Ebben	 kitérek	 a	 nagy	 nyelvi	modellek	működésének	 alapjaira,	 a	 szöveggenerálás	 és	 a	

paraméter-beállítások	 (pl.	 temperature)	 szerepére,	 valamint	bemutatom	a	 több	modell	

együttes	alkalmazásának	(ensemble)	koncepcióját	és	a	benne	rejlő	lehetőségeket.		

A	 3.1.	 fejezet	 konkretizálja	 az	 AiFusion	 rendszerrel	 szemben	 támasztott	

követelményeket,	 és	bemutat	 egy	 tipikus	use-case	 forgatókönyvet,	 amely	 szemlélteti	 a	

platform	gyakorlati	használatát.	

A	 3.2.	 fejezet	 bemutatja	 a	 rendszer	 részletes	 tervezését	 és	 architektúráját,	

bemutatva	a	backend	és	frontend	fő	komponenseit,	azok	kapcsolatait	és	a	kommunikációs	

folyamatokat,	fókuszálva	a	megvalósítás	részleteire,	kitérve	a	fejlesztés	során	alkalmazott	

technológiákra,	 eszközökre,	 valamint	 a	 kritikus	 implementációs	 kihívásokra	 és	 azok	

megoldásaira.		

A	3.3.	fejezet	egy	validációs	tesztet	és	egy	próbaüzemet	mutat	be,	a	teszten	elért	

eredmények	kiértékelése	nélkül.	

Végül	a	4.	fejezet	igyekszik	kritikusan	elemezni	és	összefoglalni	a	szakdolgozatban	

tárgyalt	témákat,	módszertanokat.	

	 17.	

1.6.2.	Stílusjegyek,	formázás	

A	dolgozat	formázása	során	több,	tudatosan	felvállalt	szerkesztési	elvet	követtem:	

• Akadémiai	 és	 Intézményi	 Megfelelés:	 Az	 „alapvető	 formázás”	 (mint	 a	

címsorok	 hierarchiája,	 tartalomjegyzék,	 ábrajegyzék)	 a	 Kodolányi	 János	

Egyetem	 szakdolgozati	 követelményeit	 (Kodolányi	 János	 Egyetem,	 2021),	

valamint	 az	 általános	 tudományos	 publikációs	 gyakorlatot	 követi.	 A	

„helyesírási	szabályok”	alkalmazása	során	a	magyar	helyesírás	szabályainak	

12.	kiadása	az	iránymutató	(MTA,	2025).	Az	irodalmi	hivatkozások	rendszere	

az	Amerikai	Pszichológiai	Társaság	(American	Psychological	Association	–	a	

továbbiakban:	APA)	„szabványon”	alapul	(APA,	2024).	

• Konzulensi	Iránymutatás	(Explicit	Hivatkozás):	A	konzulensi	visszajelzések	

alapján	a	dolgozat	egyedi	formázási	szabályt	alkalmaz	a	forráshivatkozások	

egyértelműsítésére.	Minden	külső	forrásmegjelölés	(pl.	(Szerző,	2024))	egy,	

a	szövegtörzsben	„dőlt	betűvel	és	idézőjellel”	kiemelt	kulcsfogalomhoz	vagy	

szó	szerinti	idézethez	kapcsolódik.	Ennek	a	felvállalt	formázásnak	a	célja	az	

olvasó	segítése:	egyértelműen	és	visszakereshetően	jelöli,	hogy	a	hivatkozás	

pontosan	melyik	 állítást,	 definíciót	 vagy	 adatot	 támasztja	 alá,	 elkerülve	 a	

bekezdés	végén	elhelyezett,	többértelmű	hivatkozás-csomagokat.	

• Technikai	Tartalom	Érthetősége:	Mivel	a	dolgozat	egy	szoftverarchitektúrát	

és	annak	implementációját	mutatja	be,	a	jobb	érthetőség	érdekében	a	szöveg	

olyan	 vizuális	 elemeket	 is	 tartalmaz,	 mint	 kódrészletek	 („10.	 ábra”),	

parancssori	 kimenetek	 („2.	 ábra”,	 „11.	 ábra”)	 és	 felhasználói	 felületi	

képernyőképek	 („6-9.	 ábrák”).	 Ezeket	 a	 releváns	 szövegkörnyezetbe	

ágyazva,	ábrajegyzékkel	és	forrásmegjelöléssel	ellátva	használom.	

1.6.3.	A	szakdolgozat	fókuszpontjai	és	elhatárolása	

A	 dolgozat	 fókusza	 tudatosan	 az	 AiFusion	 platform	 alaprendszerének	

megtervezésére,	 implementálására	 („3.2.	 Rendszerfelépítés	 és	 implementáció”)	 és	

működőképességének	 demonstrálására	 („3.3.	 Kismintás	 tesztelés”)	 helyeződött.	 A	

terjedelmi	és	időbeli	korlátok	miatt	azonban	számos	érdekes,	kapcsolódó	kutatási	irányt	

csak	érintőlegesen,	vagy	egyáltalán	nem	tárgyalok:	

	 18.	

• Részletes	kvalitatív	elemzés:	A	dolgozat	nem	végez	mélyreható	kvalitatív	

elemzést	arról,	hogy	a	„Bíró”	modell	milyen	nyelvi,	logikai	vagy	szemantikai	

mintázatok	alapján	hozza	meg	döntéseit.	

• Prompt	 Engineering	 mélyvizsgálata:	 Bár	 a	 platform	 lehetővé	 tenné,	 a	

dolgozat	nem	tér	ki	egy	nagyszabású	kísérletre,	amely	azt	vizsgálná,	hogy	a	

„Bíró”	 modellnek	 adott	 különböző	 instrukciók	 (pl.	 „válaszd	 a	 legjobbat”,	

„fésüld	 össze	 a	 válaszokat”,	 „elemezd	 kritikusan	 és	 írd	 újra”)	 hogyan	

befolyásolják	a	végeredmény	minőségét,	költségét	és	sebességét.	

• Célzott	 etikai	 és	 bias-mérés:	 A	 2.5	 Etikai	 és	megbízhatósági	 kihívások...	

fejezet	 felveti	 a	 témát,	 de	 a	 dolgozat	 nem	 végez	 célzott	 kísérleteket	 a	

kollaboráció	bias-csökkentő	hatásainak	mérésére	(pl.	specifikus	társadalmi	

torzításokra	fókuszáló	tesztkészletekkel).	

• Alternatív	 kollaborációs	 architektúrák:	 Az	 AiFusion	 a	 „master-slave-

judge”	(post-inference)	modellt	valósítja	meg.	A	dolgozat	terjedelmi	okokból	

nem	tér	ki	más,	a	szakirodalomban	említett	modellek	(pl.	„router”	alapú	vagy	

valós	 idejű,	 token-szintű	 „inference-közbeni”	 kollaborációk)	 gyakorlati	

implementálására	és	összehasonlítására.	

Ezek	 a	 területek	 mindegyike	 önmagában	 is	 elegendő	 témát	 szolgáltatna	 egy	

különálló	 kutatáshoz,	 amely	 a	 jövőben	 az	 AiFusion	 platformra	 épülhet.	 A	 fejlesztések	

további	lehetőséget	a	„3.2.13.	Jövőbeli	fejlesztési	irányok”	fejezet	tárgyalja.	 	

	 19.	

2.	Szakirodalmi	háttér		

A	 szakdolgozat	 témájának	 alapját	 adó	 mesterséges	 intelligencia	 kutatása	

Magyarországon	 sem	 új	 keletű.	 A	 hazai	 tudományos	 közösség	 már	 a	 2000-es	 évek	

közepén	aktívan	foglalkozott	a	haladó	„számítástechnikai	kutatás”	és	a	„mikroprocesszor-

vezérelt	 alkalmazások”	 területeivel,	 amelyek	 megalapozták	 a	 későbbi,	 modernebb	

modellek	 kutatását	 is	 (Magyar	 Tudomány,	 2005).	 Nemzetközi	 szinten	 a	 téma	

„tudásbázisának	 gyűjtése”	 szintén	 korán	 elkezdődött,	 olyan	meghatározó	 intézmények	

portáljain,	 mint	 például	 az	 Association	 for	 the	 Advancement	 of	 Artificial	 Intelligence	

(rövidítve:	AAAI)	 (AAAI,	2009).	Ezzel	párhuzamosan	a	 téma	a	hazai	 felsőoktatásban	 is	

megjelent;	 a	mesterséges	 intelligencia	 és	 a	 neurális	 hálók	már	 2010	 előtt	 is	 a	magyar	

„egyetemi	 tantervek	 részét	 képezték”,	 például	 az	 ELTE	 programtervező	 matematikus	

képzésében	(ELTE	TTK,	2008).	Maga	a	KJE/SZIE	kutatási	környezet	is	régóta	foglalkozik	

a	témával	a	magyar	nyelvű	„MIAÚ	portálon”	keresztül	(MIAÚ,	2014).	

2.1.	Nagy	nyelvi	modellek	működése	és	az	embedding	

alapelvei	

A	nagy	nyelvi	modellek	(LLM-ek)	a	bemenetként	kapott	szöveget	belső	numerikus	

reprezentációkká	alakítják,	hogy	ezen	keresztül	sajátítsák	el	a	nyelv	mintázatait.	Ennek	

kulcsa	a	„szavak	vektoralapú	megjelenítése”,	azaz	az	„embedding”	minden	szó	vagy	token	

egy	 magas	 dimenziójú	 vektortér	 egy	 pontjaként	 jelenik	 meg	 (Pennington,	 Socher,	 &	

Manning,	 2014).	 E	 pontok	 elrendezése	 úgy	 alakul,	 hogy	 a	 „hasonló	 jelentésű”	 vagy	

használatú	szavak	vektora	közel	kerüljön	egymáshoz,	(Turtogtokh,	Pitlik,	&	Pitlik,	2025.),	

(Kollár,	 2011),	míg	 „eltérő	 jelentésű	 szavak	 távolabb”	 legyenek	 (Pennington,	 Socher,	 &	

Manning,	 2014).	 Ez	 a	 szemlélet,	 amely	 a	 döntéshozatalt	 a	 „hasonlóság-elemzésre”	

alapozza,	már	korábbi	intézményi	kutatásokban	is	megjelent	(Pitlik	L.	,	[5.]	MY-X:	CONT-

ROLLING-STONES,	 2011).	 A	 LLM	nem	konkrét	 szavakat	 tárol,	 hanem	 a	 szavak	 közötti	

kapcsolatok	 sokdimenziós	 mintázatait:	 numerikusan	 kifejezhető	 a	 jelentésbeli	

hasonlóság	 azáltal,	 hogy	 két	 szó	 vektorának	 távolsága	 vagy	 szöge	 kicsi	 (pl.	 “kutya”	 és	

“macska”	közel	esnek,	míg	a	“autó”	messze	helyezkedik	el	tőlük	az	embedding	térben).	Az	

ilyen	 „word	 embedding”	 technikák	 alapját	 olyan	 algoritmusok	 teremtették	meg,	mint	 a	

Word2Vec	 vagy	 a	 GloVe,	melyek	 nagy	 szövegkorpuszokban	 figyelik	meg,	mely	 szavak	

	 20.	

fordulnak	 elő	 gyakran	 hasonló	 kontextusban	 (Pennington,	 Socher,	 &	 Manning,	 2014).	

Pennington	és	munkatársai	megfogalmazása	szerint	a	GloVe	modell	mögötti	fő	intuíció	az	

az	egyszerű	megfigyelés,	hogy	"ratios	of	word-word	co-occurrence	probabilities	have	the	

potential	 for	 encoding	 some	 form	 of	meaning"	 (Pennington,	 Socher,	&	Manning,	 2014),	

vagyis:	„a	szavak	együttes	előfordulási	valószínűségeinek	arányaiban	megvan	a	potenciál,	

hogy	 a	 jelentés	 valamilyen	 formáját	 kódolják”.	 Ennek	 eredményeként	 a	 LLM	 a	 nyelvi	

tudást	efféle	szemantikus	térben	tárolja,	ami	lehetővé	teszi	számára,	hogy	a	„jelentéssel	

bíró	 hasonlóságokat”	 matematikailag	 kezelje,	 miközben	 „a	 magas	 dimenzió”	 (gyakran	

100-nál	 is	 több)	 gondoskodik	 arról,	 hogy	a	nyelv	 finom	árnyalatai	 is	 reprezentálhatók	

legyenek,	és	a	modellek	„megfelelő	általánosító	képességgel”	rendelkezzenek	(Pennington,	

Socher,	&	Manning,	2014).	

A	LLM-ek	belső	működésének	másik	alappillére	az	ún.	„transformer	architektúra”,	

amely	 „figyelem	 (attention)	 mechanizmust”	 használ	 a	 szövegösszefüggések	 kezelésére.	

Ennek	részletei	meghaladják	e	fejezet	kereteit,	de	lényeges,	hogy	a	modell	képes	hosszú	

tartalmakban	 is	 felismerni	 a	 releváns	 összefüggéseket	 (Vaswani,	 és	 mtsai.,	 2017).	 A	

transformer	alapú	LLM	először	beágyazott	vektorok	sorozataként	értelmezi	a	bemenetet	

(tokenenként	 egy	 vektorral),	 majd	 több	 rétegen	 keresztül	 –	 figyelem	 fejtők	

alkalmazásával	–	egyre	absztraktabb	reprezentációkat	épít.	Végül	ezen	 „reprezentációk	

segítségével”	hozza	létre	a	kimenetet,	összességében	tehát	a	LLM-ek	a	nyelvet	„statisztikai	

mintázatok”	formájában	ragadják	meg:	a	tanulás	során	súlyokat	hangolnak	be	úgy,	hogy	a	

lehető	 legjobban	 modellezzék,	 milyen	 szavak	 és	 kifejezések	 hogyan	 kapcsolódnak	

egymáshoz	a	természetes	nyelvben	(Vaswani,	és	mtsai.,	2017).	

2.2.	Tokenizáció	és	a	szöveggenerálás	logikája	

Mielőtt	a	modell	generálni	kezdene	bármilyen	választ,	a	bemeneti	szöveget	először	

fel	 kell	 dolgoznia.	 Ennek	 első	 lépése	 a	 tokenizáció,	 amelynek	 során	 a	 nyers	 szöveget	

kisebb	elemekre	–	tokenekre	–	bontja	a	rendszer.	A	token	lehet	egy	teljes	szó,	szótő,	szótag	

vagy	akár	egyetlen	karakter,	a	használt	tokenizáló	algoritmustól	függően.	A	modern	LLM-

ek	gyakran	ún.	„subword	tokenizálást	alkalmaznak	(pl.	Byte-Pair	Encoding,	WordPiece)”,	

amely	biztosítja,	hogy	a	gyakori	szavak	egy	tokenként	jelennek	meg,	míg	a	ritkább	vagy	

összetett	szavak	több	tokenre	bonthatók	(Microsoft,	2025.).	A	tokenizáció	célja,	hogy	a	

szöveg	 megfelelő	 formátumú	 numerikus	 sorozattá	 (token	 indexek	 sorává)	 alakuljon,	

	 21.	

amelyen	a	modell	már	 tud	műveleteket	végezni.	A	Microsoft	dokumentációja	 szerint	 a	

tokenek	"pieces	of	words,	syllables,	or	even	characters	that	text	is	broken	down	into	for	the	

model	 to	 process."	 (Microsoft,	 2025.),	 vagyis:	 „szavak	 darabjai,	 szótagok	 vagy	 akár	

karakterek,	amelyekre	a	szöveget	felbontják,	hogy	a	modell	fel	tudja	dolgozni”.	Például	a	

“Megyek	haza”	mondat	tokenjei	lehetnek	["Meg",	"yek",	"	haza"]	egy	Bájtpár	Kódolás	(Byte-

Pair	Encoding	–	a	továbbiakban:	BPE)	alapú	tokenizálás	esetén,	ahol	a	szóvégi	rag	külön	

tokenként	 jelenik	 meg.	 Minden	 tokenhez	 a	 modell	 egy	 „egyedi	 azonosítót	 és	 egy	

hozzárendelt	vektor-(embedding)	reprezentációt”	tart	nyilván	(Microsoft,	2025.).	

Miután	 a	 bemenet	 tokenek	 formájában	 a	 modellhez	 került,	 megindul	 a	

szöveggenerálás	folyamata.	A	LLM	a	dekóder	(szövegkibocsátó)	részében	iteratív	módon	

állítja	 elő	 a	 kimenő	 mondatot	 tokenről	 tokenre.	 Minden	 lépésben	 kiszámít	 egy	

„valószínűségi	 eloszlást”	 a	 lehetséges	 következő	 tokenekre	 –	 azaz	 megjósolja,	 hogy	 az	

addigi	szövegkörnyezet	alapján	mi	lehet	a	következő	szó	vagy	részlet	(Sybrandwildeboer,	

2025).	 Ezt	 tekinthetjük	 úgy,	 hogy	 a	modell	minden	 pillanatban	 rangsorolja	 a	 szókincs	

összes	 lehetséges	 folytatását	 egy	 valószínűségi	 értékkel.	 Például	 egy	 megfelelően	

betanított	modellnél,	ha	a	bemenet	a	“A	macska	leugrott	a	…”,	akkor	a	következő	tokenre	

olyan	valószínűségi	eloszlást	adhat,	hogy	“kanapéról”	80%,	“falról”	15%,	“tégláról”	0.5%	

stb.	–	attól	függően,	a	„tréningkor	mely	folytatások	voltak	jellemzőek”	(Sybrandwildeboer,	

2025).	Alapértelmezésben	a	modell	a	legmagasabb	valószínűségű	token(eke)t	választja	ki	

következőnek,	és	hozzáfűzi	a	szöveghez.	Ezt	követően	az	így	kibővült	szöveg	végét	veszi	

figyelembe	 „új	 kontextusként”	 (Sybrandwildeboer,	 2025),	 és	 „megismétli	 a	 predikciós	

lépést”	a	soron	következő	tokenre,	(Microsoft,	2025.).	Ez	a	folyamat	iteratívan	halad	előre	

mindaddig,	amíg	a	modell	 le	nem	zárja	a	választ	(például	egy	Szekvencia	Vége	(End	of	

Sequence	–	a	továbbiakban:	EOS)	vagyis	a	válasz	vége	token	kiadásával,	vagy	amíg	el	nem	

éri	 a	 megengedett	 maximális	 hosszt).	 Fontos	 kiemelni,	 hogy	 a	 modell	 „a	 teljes	 eddigi	

kontextust	figyelembe	veszi”	minden	egyes	lépésnél	–	nem	csupán	az	utolsó	néhány	szót	–

,	 így	 képes	 a	 hosszabb	 távú	 nyelvtani	 és	 szemantikai	 összefüggésekre	 is	 reagálni	

(Sybrandwildeboer,	2025).	Ennek	köszönhető,	hogy	egy	LLM	nagyobb	szövegablak	esetén	

is	következetes	maradhat	és	visszautalásokat	kezelhet.	

A	tokenizáció	és	a	szekvenciális	szövegépítés	kombinációja	azt	eredményezi,	hogy	a	

LLM-ek	meghökkentően	koherens	mondatokat	 tudnak	 létrehozni	pusztán	a	statisztikai	

mintázatok	követésével.	Ugyanakkor	e	működési	logikából	fakadnak	a	korlátai	is:	mivel	a	

	 22.	

modell	mindig	a	legvalószínűbb	(vagy	majdnem	legvalószínűbb)	folytatást	igyekszik	adni,	

nincsen	beépített	mechanizmusa	az	igazságtartalom	ellenőrzésére	–	erről	még	lesz	szó	a	

„2.5.2	Hallucináció”	alfejezetben	az	ún.	hallucináció	kapcsán.	Mindenesetre,	a	tokenizáció	

precíz	 megválasztása	 és	 a	 generálási	 algoritmus	 (dekódolási	 stratégia)	 nagyban	

befolyásolja	a	modell	válaszainak	minőségét	és	jellegét.	A	„dekódolási	stratégia”	(Ji	Z.	,	és	

mtsai.,	[25.]	Survey	of	Hallucination	in	Natural	Language	Generation,	2023)	lehet	például	

„greedy	search”	(mindig	a	top1	tokent	választva)	(Brown,	és	mtsai.,	34.	Language	models	

are	 few-shot	 learners),	 „beam	 search”	 (egyszerre	 több	 lehetséges	 folytatást	 követve	

nyomon)	 (Sennrich,	 Haddow,	 &	 Birch,	 2016),	 vagy	 „random	 sampling”	 (Hugging	 Face,	

2025)	különféle	paraméterekkel	(pl.	„nucleus	sampling”	top-p	szerint),	(Holtzman,	Buys,	

Du,	Forbes,	&	Choi,	2019).	

2.3.	 Kreativitás	 vs.	 determinizmus:	 a	 temperature	

paraméter	szerepe	

A	szöveggenerálásnál	megismert	valószínűségi	eloszlásokból	fakadóan	a	modellek	

kimenete	többé-kevésbé	randomizálható.	Ennek	szabályozására	szolgál	a	temperature	

(hőmérséklet)	 nevű	 paraméter,	 amely	 közvetlenül	 befolyásolja,	 mennyire	 legyen	

„kreatív”	 vagy	 éppen	 kiszámítható	 a	modell	 válasza.	Matematikailag	 a	 „temperature	 a	

kimeneti	 valószínűségi	 eloszlás	 simítását	 vagy	 élesítését	 végzi”:	 alacsony	 értéknél	 az	

eloszlás	 csúcsosabbá	 válik	 (a	 legvalószínűbb	 tokenek	 dominálnak),	 míg	 magasabb	

értéknél	laposabb	(a	kisebb	valószínűségű	tokenek	is	nagyobb	eséllyel	bekerülhetnek	a	

mintavételbe)	(Microsoft,	2025.).	

Gyakorlati	szempontból	ez	azt	jelenti,	hogy	egy	nagyon	alacsony	temperature	(pl.	

0.0–0.2)	esetén	a	modell	szinte	mindig	a	legvalószínűbb	következő	szót	választja	–	ezzel	

determinisztikus	 és	 jellemzően	 pontos,	 de	 olykor	 „száraz”	 vagy	 sablonos	 választ	 ad	

(Sybrandwildeboer,	2025).	Shelar	ezt	úgy	foglalja	össze:	"Low-temperature	values	make	

the	output	more	deterministic,	favoring	the	most	likely	words."	(Shelar	M.	,	2025),	vagyis:	

„Az	 alacsony	 hőmérsékleti	 értékek	 determinisztikusabbá	 (kiszámíthatóbbá)	 teszik	 a	

kimenetet,	 előnyben	 részesítve	 a	 legvalószínűbb	 szavakat.”.	 Ilyenkor	 a	 kreativitás	

minimális:	ha	kétszer	tesszük	fel	ugyanazt	a	kérdést	a	modellnek	azonos	paraméterekkel,	

jó	eséllyel	szó	szerint	ugyanazt	a	választ	kapjuk	vissza.	Ezzel	szemben,	ha	magasabb	a	

temperature	 (pl.	 1.0–1.2,	 vagy	 extrém	 esetben	még	magasabb),	 a	modell	 a	 lehetséges	

	 23.	

folytatások	közül	arányosabban	válogat,	beleértve	a	kevésbé	valószínű	opciókat	is.	Ennek	

eredménye	egy	változatosabb,	kreatívabb	szöveg,	amely	viszont	kevésbé	kiszámítható,	

és	 nagyobb	 eséllyel	 tartalmaz	 kisebb	pontatlanságokat	 vagy	 stílusbeli	meglepetéseket.	

Például	 a	 “A	 macska	 leugrott	 a	 …”	 mondat	 folytatása	 temperature=0.2	 mellett	 nagy	

valószínűséggel	 “kanapéról.”	 lesz,	míg	 temperature=1.2	 esetén	 akár	 “napfényben	 úszó	

kerítés	tetejéről,	egyenest	az	udvar	puha	füvére.”	jellegű	kreatív	folytatást	is	kaphatunk.	

Látható,	 hogy	 utóbbi	 jóval	 „színesebb	 és	 részletgazdagabb,	 noha	 az	 információ	

szempontjából	nem	feltétlen	pontosabb”	(Sybrandwildeboer,	2025).	

A	temperature	paramétert	gyakran	a	0	és	1,5	közötti	tartományban	állítják	be	a	

gyakorlatban.	 A	 0	 közeli	 értékek	 a	 maximum	 valószínűségre	 törő	 (argmax)	

szövegkibocsátást	közelítik	–	ilyenkor	a	modell	determinisztikusan	működik,	mintha	egy	

„autokomplet”	 funkció	 mindig	 a	 legkézenfekvőbb	 folytatást	 fűzné	 hozzá	 a	 mondathoz	

(Shelar	M.	,	2025).	A	~1.5	érték	körüli	temperature	ezzel	szemben	a	teljes	tanult	eloszlást	

kihasználja,	ami	kreatív,	néha	meglepő	fordulatokat	hozó	válaszokat	eredményez.	Fontos	

azonban	megjegyezni,	hogy	magas	temperature	esetén	a	modellek	hajlamosak	lehetnek	

koherenciavesztésre:	 a	 szöveg	 összefüggéstelenebbé	 válhat,	 mert	 túlságosan	 lapossá	

tesszük	az	eloszlást	(szinte	véletlenszerű	választást	engedélyezve).		

A	 kísérleti	 beállításoknál	 a	 temperature	 0,0.	 Érdekes	 megközelítés,	 amely	 a	

következő	fejezetben	tárgyalt	kollektív	modell	használatra	is	kihat,	hogy	különböző	LLM-

eket	vagy	akár	ugyanazon	LLM	több	példányát	eltérő	temperature	értékekkel	 futtatjuk	

párhuzamosan.	Például	egy	kísérletben	az	egyik	modell	nagyon	alacsony	kreativitással	

(0,0),	a	másik	nagyon	magas	kreativitással	(pl.	1,5)	generál	választ,	majd	egy	meta-szintű	

algoritmus	 vagy	 egy	 bíró	 modell	 kombinálja	 ezeket	 –	 így	 egyszerre	 van	 egy	

„ultraracionális”	 és	 egy	 „ultrakreatív”	 nézőpontunk,	 amelyekből	 egyensúlyozott	 végső	

válasz	 születhet.	 Ez	 a	 fajta	 kontrasztív	 beállítás	 növelheti	 a	 válaszok	 diverzitását,	

ugyanakkor	biztosítja,	hogy	a	végső	outputban	a	megbízhatóság	is	megmaradjon.	

2.4.	Kollektív	AI-megközelítés	és	előnyei	

A	mesterséges	intelligencia	és	gépi	tanulás	területén	régóta	ismert	módszer,	hogy	

„több	modell	együttes	alkalmazásával	(ensemble)”	javítható	az	előrejelzések	pontossága	és	

megbízhatósága	(Breiman,	1996).	Ennek	hátterében	az	a	statisztikai	jelenség	áll,	hogy	a	

különböző	 modellek	 különböző	 hibákat	 vétenek,	 és	 ha	 okosan	 kombináljuk	 a	

	 24.	

kimeneteiket,	a	hibák	egy	része	kiegyenlítheti	egymást.	Dietterich	definíciója	szerint	az	

ensemble	módszerek	 "construct	a	 set	 of	 classifiers	and	 then	 classify	new	data	points	by	

taking	a	(weighted)	vote	of	their	predictions"	(Dietterich	T.	G.,	2000).	Példák	erre	a	bagging,	

boosting,	stacking	algoritmusok	a	gépi	tanulásban,	illetve	az	olyan	meta-modellek,	mint	a	

random	forest	(ami	sok	döntési	fát	átlagol)	vagy	az	átlagos	szakértő	módszere	(ami	több	

szakértő	véleményéből	képez	konszenzust).	A	kollektív	 intelligencia	 elve	–	miszerint	

több	független	vélemény	vagy	forrás	kombinációja	jobb	megoldást	adhat,	mint	bármelyik	

önmagában	–	a	mesterséges	intelligenciában	is	kamatoztatható.	

Mivel	a	LLM-ek	eltérő	szövegkorpuszon	tanultak	és	más	fejlesztésű	algoritmusokat	

alkalmaznak	 a	 válaszadás	 során,	 ezért	 erősségeik	 és	 gyengeségeik	 különbözhetnek,	

adódik	az	ötlet,	hogy	ne	egyetlen	modelltől	várjunk	minden	kérdésre	tökéletes	választ,	

hanem	„több	modell	válaszát	kombinálva”	próbáljunk	meg	jobb	eredményt	elérni	(Chen,	

és	mtsai.).	 Egy	 friss	 kutatási	 áttekintés	 rámutat,	 hogy	 a	 különböző	 LLM-ek	 jelentősen	

eltérhetnek	 egymástól	 a	 felépítésük	 (architektúra,	 paraméterszám),	 a	 tokenizációs	

módszerük,	a	tanítási	adatuk	és	egyéb	tényezők	miatt	–	emiatt	„ugyanarra	a	kérdésre	is	

eltérő	 válaszokat	 adhatnak”	 (Chen,	 és	 mtsai.).	 Ha	 ezeket	 az	 eltérő	 perspektívákat	

kombináljuk,	esély	van	rá,	hogy	„összességében	jobb	teljesítményt	kapunk”,	hiszen	az	egyik	

modell	korrigálhatja	a	másik	pontatlanságát,	vagy	kiegészítheti	annak	válaszát	(Chen,	és	

mtsai.).	Ez	hasonló	ahhoz,	mint	amikor	egy	orvosi	diagnózisnál	 több	orvos	véleményét	

kérjük	ki	(második	vélemény):	a	végső	diagnózis	megbízhatósága	nő.	

A	 szakirodalomban	 megjelentek	 már	 konkrét	 módszerek	 a	 LLM-ek	

együttműködésére.	 Chen	 „taxonómiája	 három	 fő	 kategóriába	 sorolja	 a	 LLM	 ensemble	

technikákat”	aszerint,	hogy	a	kombináció	mikor	történik	a	folyamatban	(Chen,	és	mtsai.):	

(1)	Inference	előtt	–	azaz	a	kérdés	alapján	előre	kiválasztjuk,	melyik	modell	valószínűleg	

a	legjobb	(úgynevezett	router	vagy	szakosodott	szakértők);	(2)	Inference	közben	–	több	

modell	párhuzamosan	generálja	a	választ	token	szinten	egymással	kommunikálva,	kvázi	

valós	időben	összeegyeztetve	a	kimenetet;	(3)	Inference	után	–	minden	modell	megadja	a	

teljes	válaszát,	majd	egy	utófeldolgozó	mechanizmus	(akár	egy	másik	modell)	dönt	arról,	

hogy	 ezekből	 melyik(ek)	 a	 legjobb(ak),	 vagy	 hogyan	 lehet	 őket	 összeolvasztani.	 Az	

AiFusion	megközelítése	–	ahogy	a	következő	alfejezetben	 látni	 fogjuk	–	 főként	ebbe	az	

utóbbi	 kategóriába	 esik:	 a	 külön	modell-válaszok	 utólagos	 kombinálásával	 igyekszik	 a	

legjobb	elemeket	egyesíteni.	A	lényeg,	hogy	bármely	stratégiát	is	választjuk,	a	„több	modell	

	 25.	

kollektív	döntése”	(Chen,	és	mtsai.)	elméletben	megbízhatóbb	lehet,	„mint	egy	magányos	

modellé”,	(Kovács	&	Pitlik,	2025).		

Az	 ensemble	módszer	 előnyei	 tehát	 összefoglalva:	 növelheti	 az	pontosságot	 (pl.	

kérdés-meg-válasz	feladatoknál	jobb	találati	arány),	javíthatja	a	robosztusságot	(egy-egy	

modell	hibája	kevésbé	befolyásolja	a	végeredményt),	és	csökkentheti	a	torzításokat	(ha	

az	 eltérő	 modellek	 más-más	 bias-szal	 rendelkeznek,	 azok	 részben	 kiegyenlíthetik	

egymást).	 Ugyanakkor	 megvannak	 a	 kihívásai	 is:	 a	 modellek	 együttműködésének	

összehangolása	 nem	 triviális	 (pl.	 konfliktusos	 válaszok	 esetén	 dönteni	 kell),	 növeli	 a	

számítási	költséget,	és	a	válasz	magyarázhatóságát	 is	bonyolíthatja,	ha	egy	meta-szintű	

döntéshozó	algoritmus	dolgozik	a	háttérben.	Ezen	problémák	egy	részére	az	AiFusion	egy	

sajátos	megoldást	kínál	egy	bíró	modell	formájában.	

	

2.5.	Etikai	és	megbízhatósági	kihívások	a	LLM-eknél	

A	 nagy	 nyelvi	 modellek	 alkalmazása	 kapcsán	 komoly	 etikai	 és	 felhasználói	

élménybeli	aggályok	merültek	fel	az	utóbbi	években.	Ezek	közé	tartozik	egyrészt	a	bias	

(torzítás,	elfogultság)	problémája,	másrészt	az	úgynevezett	hallucináció,	azaz	amikor	a	

modell	magabiztosan	állít	valótlanságokat.	

2.5.1.	Bias	

A	 bias	 alatt	 azt	 értjük,	 hogy	 a	 modell	 tréningadatában	 meglévő	 társadalmi	

előítéletek,	 sztereotípiák,	 egyenlőtlenségek	 beépülnek	 a	 modell	 viselkedésébe,	 és	 így	

annak	„kimeneteiben	is	megjelennek”	(Kovács	&	Pitlik,	2025).	Mivel	a	LLM-ek	rendkívül	

nagy	 korpuszokon	 tanulnak	 (tipikusan	 internetes	 szövegek	 milliárdjain),	 óhatatlanul	

magukba	 szívják	 az	 emberi	 nyelvben	 meglévő	 történelmi	 és	 kulturális	 torzításokat	

(például	 nemi	 vagy	 faji	 sztereotípiákat).	 Caliskan	 és	 munkatársai	 (Caliskan,	 2017)	

tanulmányukban	 kimutatták,	 hogy	 a	 szóbeágyazási	 modellek	 is	 „emberi	 jellegű	

előítéleteket”	hordoznak:	például	a	“nő	szóhoz	közelebb	asszociálnak	bizonyos	család	vagy	

művészet	tematikájú	szavakat,	míg	a	férfi	szóhoz	a	„tudomány	vagy	matematika	szavait”	

(Guo,	 és	 mtsai.).	 Hasonlóképpen	 a	 nyelvi	 modellek	 hajlamosak	 lehetnek	 folytatni	 a	

szöveget	 olyan	 módon,	 ami	 megerősíti	 a	 társadalmi	 sztereotípiákat	 –	 ha	 például	 a	

	 26.	

tanítóadatban	 gyakoribb	 egy	 bizonyos	 csoporttal	 kapcsolatos	 negatív	 kontextus,	 ezt	 a	

mintázatot	a	modell	továbbviheti	a	válaszaiba.	Az	etikai	kockázat	nyilvánvaló:	egy	bias-t	

tartalmazó	modell	 félrevezető	 vagy	 diszkriminatív	 outputot	 adhat,	 ami	 sértheti	 egyes	

felhasználói	 csoportok	 érdekeit,	 és	 „alááshatja	 a	 rendszer	 pártatlanságába	 vetett	

bizalmat”	 (Guo,	 és	 mtsai.).	 A	 szakirodalom	 folyamatosan	 keresi	 a	 megoldásokat	 e	

problémára:	egyrészt	adat-szintű	beavatkozásokkal	(kiegyensúlyozottabb,	megtisztított	

tanító	 adatkészletek	 használatával),	 másrészt	modell-szintű	 technikákkal	 (pl.	 utólagos	

finomhangolás	 explicit	 fairness	 célfüggvénnyel,	 utófeldolgozó	 szűrés	 a	 kimeneteken)	

igyekeznek	 mérsékelni	 a	 LLM-ek	 torzításait.	 Emellett	 a	 jogi-szabályozási	 oldal	 is	

megjelent:	 például	 az	 Európai	 Únió	 készülő	 „AI	 Act”	 (European	 Parliament,	 2025)	

rendelete	 előírja	 a	 „magas	 kockázatú	 AI	 rendszerek	 esetén	 a	 humán	 felügyeletet	 és	 a	

fairness	biztosítását”	(Kuriakose,	2024).	Mindez	mutatja,	hogy	a	bias	kezelése	nem	csupán	

technikai,	hanem	társadalmi-kulturális	feladat	is.	

2.5.2.	Hallucináció	

A	 hallucináció	 jelensége	 alatt	 azt	 értjük,	 amikor	 a	 nyelvi	 modell	 meggyőzően	

hangzó,	 de	 valótlan	 vagy	 alaptalan	 információt	 ad	 ki.	 Ji	 és	 munkatársai	 átfogó	

felmérésükben	úgy	definiálják	a	ténybeli	hallucinációt,	mint	amikor	"	the	generated	output	

contains	factual	inconsistencies	or	fabrication,	which	cannot	be	inferred	from	[...]	the	world	

knowledge	 or	 the	 provided	 source	 information"	 (Ji	 Z.	 ,	 és	 mtsai.,	 [25.]	 Survey	 of	

Hallucination	in	Natural	Language	Generation,	2023),	vagyis:	„a	generált	kimenet	ténybeli	

következetlenségeket	 vagy	 kitalációt	 tartalmaz,	 amely	 nem	 vezethető	 le	 [...]	 a	 világ	

ismeretéből	vagy	a	biztosított	forrásinformációból”.	A	LLM	egyszerűen	“kitalál”	valamit	–	

például	 egy	 nem	 létező	 tényt,	 hamis	 hivatkozást,	 valótlan	 eseményt	 –	 anélkül,	 hogy	

tudatában	lenne	tévedésének.	Ez	a	viselkedés	abból	fakad,	hogy	a	modellnek	nincs	valódi	

ismeretbázisa	 vagy	 valóság-ellenőrző	 mechanizmusa:	 a	 tanulás	 során	 nem	 épít	 ki	

tényadatbázist,	 csupán	 a	 szövegmintázatokat	 tanulja	 meg.	 Így	 amikor	 egy	 kérdésre	 a	

helyes	 választ	 nem	 „emlékszik”	 a	 tanultakból,	 akkor	 is	 megpróbál	 valami	 hihetőt	

generálni,	hiszen	erre	van	beprogramozva	–	a	 legvalószínűbb	következő	szavakat	fogja	

leírni	még	akkor	is,	ha	azok	együtt	valótlan	állítást	alkotnak.	Az	ilyen	hallucináció	lehet	

viszonylag	ártalmatlan	(pl.	egy	vicces	anekdotát	tulajdonít	rossz	történelmi	személynek),	

de	lehet	nagyon	is	veszélyes:	„félrevezető	orvosi	tanács,	nem	létező	jogi	precedens	citálása,	

üzleti	adatok	pontatlan	közlése	stb.”	is	előfordult	már	a	gyakorlatban	(Nirdiamant,	2025).	

	 27.	

A	 megbízhatóság	 különösen	 kritikus	 az	 olyan	 magas	 kockázatú	 területeken,	 mint	 a	

védelem-egészségügy,	 ahol	 a	 modern	 technológiák	 (pl.	 VR/AR,	 szimuláció)	 már	 a	

„képzésben	és	a	gyakorlatban	is	megjelennek”	(Fejes,	Pitlik,	Rikk,	Szűcs,	&	Túri,	2024/1-2).	

Az	 esetek	 többségében	 a	 modell	 nem	 szándékosan	 „hazudik”,	 inkább	 egy	 túlságosan	

magabiztos	 autokomplettőrként	 viselkedik,	 aki	 nem	 tudja	 azt	 mondani,	 hogy	 “nem	

tudom”,	 hanem	 „mindig	 válaszol	 valamit”	 (Nirdiamant,	 2025).	 Ez	 komoly	 UX-

megbízhatósági	 kihívás:	 a	 felhasználó	 számára	 nehezen	 megkülönböztethető,	 mikor	

pontos	a	válasz	és	mikor	koholt	–	hiszen	a	stílus	mindkét	esetben	magabiztos.	

2.5.3.	A	hallucináció	és	a	bias	enyhítése	

A	hallucináció	és	a	bias	jelensége	egyaránt	aláássa	a	LLM	alapú	rendszerekbe	vetett	

bizalmat,	ezért	a	szakirodalom	több	megoldást	is	javasol	ezek	enyhítésére.	Az	egyik	út	a	

modellek	kimeneteinek	utóellenőrzése:	például	egy	második	modell	 vagy	egy	 speciális	

algoritmus	ellenőrizheti	a	 tényállításokat	(pl.	 források	keresésével),	 illetve	kiszűrheti	a	

nyilvánvaló	 ellentmondásokat	 a	 válaszban.	 Egy	 másik	 megközelítés	 a	 kollektív	

válaszadás	 –	 éppen	 az	 ensemble	 módszerek	 alkalmazása.	 Ha	 több	 modell	 válaszol	

ugyanarra	a	kérdésre,	utána	pedig	összevetjük	ezeket,	akkor	az	inkonzisztens	vagy	kilógó	

elemek	 gyanúként	 azonosíthatók.	 A	 szakirodalomban	 ezt	 néha	 self-consistency	 néven	

említik:	egy	modell	saját	több	mintáját	vagy	több	modell	változatot	futtatva	többszörös	

válaszokat	gyűjtünk,	majd	a	konszenzust	keressük	közöttük	(pl.	többségi	szavazással	vagy	

konszenzusos	 összevonással).	 „Humán	 felügyelet	 bevonása”	 is	 gyakran	 javasolt:	 fontos	

döntési	 helyzetekben	 (pl.	 orvosi	 diagnózis,	 pénzügyi	 döntés)	 a	 LLM-ek	 által	 generált	

tartalmat	 mindig	 át	 kell	 néznie	 egy	 emberi	 szakértőnek,	 mielőtt	 azt	 véglegesnek	

tekintenénk	 (Nirdiamant,	 2025),	 (Schiller,	 2024).	 Ez	 megfelel	 a	 human-in-the-loop	

paradigma	 követésének,	 ami	 számos	 mesterséges	 intelligencia	 alkalmazásnál	 bevett	

biztonsági	háló.	

Az	 AiFusion	 rendszer	 tervezése	 során	 ezen	 kihívások	 tudatosan	 kezelendők.	 A	

platform	 abból	 az	 alapötletből	 indul	 ki,	 hogy	 a	 bíró	 modell	 révén	 csökkenthető	 a	

hallucináció	és	bias	hatása:	ha	több	különböző	LLM	válaszát	egy	magasabb	szintű	modell	

értékeli,	akkor	esély	van	rá,	hogy	„kiszűri	az	egymásnak	ellentmondó	vagy	nyilvánvalóan	

hibás	 állításokat”,	 mielőtt	 a	 választ	 a	 felhasználó	 megkapja	 (Kovács	 &	 Pitlik,	 2025).	

Például,	 ha	 egy	 modell	 hallucinált	 egy	 téves	 “tényt”,	 de	 a	 többiek	 nem,	 a	 bíró	 ezt	

	 28.	

detektálhatja	és	figyelmen	kívül	hagyhatja.	Ugyanígy	a	bias	mérséklésére	is	lehet	esély:	

egy	diverz	modellt	együttesen,	ha	egy	adott	torzítás	csak	az	egyik	modellnél	erős,	a	bíró	a	

többiek	 válaszai	 alapján	 korrigálhat.	 Természetesen	 mindez	 nem	 garancia	 a	

tökéletességre	–	a	bíró	modell	is	LLM,	így	maga	is	hibázhat	vagy	torz	lehet	–,	de	egy	extra	

védelmi	vonalat	képez	a	rendszerben	a	megbízhatóság	 javítására.	Emellett	az	AiFusion	

fejlesztése	 során	 is	 tervezem	 statikus	 szabályok	 és	 prompt-szintű	 korlátozások	

bevezetését	 (például	 a	 bíró	 modell	 utasításában	 kikötni,	 hogy	 csak	 akkor	 fogadjon	 el	

választ,	ha	az	forrásokkal	alátámasztható	stb.).	Az	ilyen	kombinált	módszerek	–	technikai	

és	 emberi	 kontroll	 –	 együttes	 alkalmazása	 felel	 meg	 leginkább	 a	 jelenlegi	 legjobb	

gyakorlatnak	a	generatív	modellek	felelős	használatában.	

2.6.	 Az	 AiFusion	 architektúra	 a	 kollektív	 AI	

kontextusában	

Az	AiFusion	platform	architektúrája	a	fent	tárgyalt	elveket	egy	konkrét	rendszerben	

valósítja	meg.	 Felépítése	a	 “fordított	piramis”	modellt	 követi:	 több	párhuzamosan	 futó	

slave	 (szolga)	 LLM	 ad	 választ	 egy	 adott	 kérdésre,	majd	 egy	magasabb	 szintű	master	

(bíró)	 modell	 értékeli	 és	 egyesíti	 ezen	 válaszokat.	 Praktikusan	 ez	 egy	 többlépcsős	

folyamatot	jelent,	ahol	például	az	első	szinten	négy	különböző	nyelvi	modell	generál	négy	

választ,	 a	 második	 szinten	 két	 (vagy	 akár	 több)	 modell	 összehasonlítja	 ezeket	 és	

kiválasztja	 a	 legjobb(ak)at,	 végül	 a	 harmadik	 szinten	 egy	 utolsó	 bíró	 modell	 dönt	 a	

fennmaradó	válaszok	között,	vagy	összefésüli	őket	egyetlen	koherens	válasszá.	A	folyamat	

biztosítja,	 hogy	 a	 végső	 output	 több	 modell	 perspektíváját	 is	 figyelembe	 veszi,	

kihasználva	a	kollektív	intelligencia	előnyeit	a	megbízhatóbb	eredmény	érdekében.	Ahogy	

a	kapcsolódó	konferenciacikkben	megfogalmaztuk,	a	cél	egy	olyan	platform	létrehozása,	

amely	"enables	collaborative	AI	testing	and	the	emergence	of	AI	self-criticism"	(Kovács	&	

Pitlik,	 2025.)	 Ez	 a	 szervezeti	 felépítés	 szorosan	 kapcsolódik	 a	 „hasonlóságelemzés”	

(similarity	 analysis)	 és	 az	 „automatizált	 intuíció-generálás”	 (automated	 intuition-

generation)	 alapelveihez,	 amelyek	 a	 KJE/SZIE	 kutatási	 körében	 már	 2014-ben	

megjelentek	(Pitlik	L.	,	[1.]	My-X	Team,	an	innovative	idea-breeding	farm,	2014).	

	 29.	

2.6.1.	A	lekérdezés	menete,	frontend	

A	rendszer	adatútja	ennek	megfelelően	alakul:	 a	 felhasználó	egy	kérdést	 intéz	az	

AiFusionhoz,	ami	aztán	a	backend	oldalon	egyszerre	továbbítja	a	kérést	több	kiválasztott	

LLM	API-nak.	Az	egyes	modellek	megfogalmazzák	a	saját	válaszukat,	amelyeket	ezután	a	

frontend	 vagy	 a	 backend	 logika	 egyesít	 egy	 végső	 outputtá.	 Jelen	 implementációban	 –	

prototípus	 lévén	 –	 a	 bírói	 logika	 főként	 a	 frontenden	 került	 megvalósításra	 kísérleti	

jelleggel.	 A	 webes	 kliens	 program	 (JavaScript/React	 alapon)	 biztosít	 külön	 nézetet,	

például	a	“3	LLM	+	Judge”	módot,	ahol	a	felhasználó	egyszerre	három	modellt	futtathat	

párhuzamosan,	 majd	 a	 rendszer	 automatikusan	 meghív	 egy	 negyedik,	 bíró	 szerepű	

modellt,	hogy	feldolgozza	a	három	választ.	Ezt	úgy	valósítottam	meg,	hogy	a	frontenden	a	

ThreeLLMJudge.jsx	 komponens	 egy	miniatűr	workflow-t	 implementál:	 a	 három	 slave	

modell	 API-hívását	 párhuzamosan	 indítja	 el,	 megvárja	 mindegyik	 eredményét,	 majd	

ezeket	 egy	 formázott	 prompt	 részeként	 beküldi	 a	 bíró	 modellnek	 értékelésre.	 A	 bíró	

modell	promptja	tartalmazza	az	eredeti	felhasználói	kérdést	és	a	három	kapott	választ,	

kiegészítve	 előre	 definiált	 utasításokkal	 (pl.	 utasítás	 a	 bíró	 számára:	 döntse	 el,	melyik	

válasz	 a	 legjobb,	 indokolással).	 Így	 a	 bíró	 LLM	 kvázi	 metamodellként	 működik:	 nem	

közvetlenül	a	felhasználói	kérdésre	válaszol,	hanem	a	modell-válaszok	alapján	hoz	ítéletet	

vagy	összegzést.	

2.6.2.	Backend	

A	backend	egy	Flask	alapú	Python	szerver,	amely	az	AIInterface	modulon	keresztül	

valósítja	 meg	 a	 több	 modell	 együttes	 kezelését:	 paraméterei	 között	 szerepel,	 mely	

szolgáltatók	(OpenAI,	Anthropic,	Google,	DeepSeek)	mely	modelljeit	hívja	meg,	mekkora	

max.	 token	 hosszúsággal,	 milyen	 kreativitással	 stb.	 E	 modul	 a	 hívások	 eredményeit	

összegyűjti	 és	 visszaadja	 a	 frontendnek.	 A	 frontenden	 aztán	 a	 ThreeLLM	 Judge	

komponens	gondoskodik	róla,	hogy	ha	szükséges,	a	bíró	modellt	 is	bevonja.	A	jelenlegi	

prototípusban	 az	 ensemble	 logika	 tehát	 félig	manuális	 (gombokkal	 aktiválható	módok	

formájában),	a	jövőbeli	fejlesztési	tervek	közt	szerepel	ennek	automatizálása	a	backend	

oldalon	egy	általános	orkesztráló	modul	 formájában.	Továbbá	 folyamatban	van	a	bírói	

promptok	 finomhangolása	 és	 esetleg	 a	 bíró	 modell	 továbbképzése	 is,	 hogy	 minél	

megbízhatóbban	ismerje	fel	a	legjobb	választ	vagy	a	kombinálandó	elemeket.	

	 30.	

2.7.	A	tantárgyak	és	a	dolgozat	témájának	

összefüggései	

A	 szakdolgozatban	 tárgyalt	 AiFusion	 platform	 tervezése	 és	 megvalósítása	 során	

nemcsak	 a	 közvetlen	 szakirodalmi	 háttérben	 tárgyalt	 technológiai	 alapelvek	 voltak	

relevánsak,	 hanem	 a	 képzés	 során	 elsajátított	 tágabb	 ismeretkörök	 is.	 Az	 alábbiakban	

ezeket	a	kapcsolatokat	részletezem.	

2.7.1.	Matematikai	alapok	

A	 „Matematikai	 alapok”	 tantárgy	 ismeretanyaga	 több	 területen	 releváns.	 Az	

embeddingek	 (2.1)	 megértéséhez	 szükséges	 lineáris	 algebrai	 háttér	 mellett	 a	 tárgy	

további	pontokon	is	kapcsolódik	a	dolgozat	témájához:		

• Az	 egyszerű	 valószínűségszámítás	 segít	megérteni	 a	modellek	 válaszainak	

minőségét,	bizonytalanságát	és	a	temperature	paraméter	működését	(lásd:	

„2.3	Kreativitás	vs.	determinizmus:	a	temperature	paraméter	szerepe”).	

• A	 modellek	 teljesítményének	 méréséhez	 statisztikát	 (pontosság,	 átlag,	

szórás)	alkalmazunk	(„3.3.	Kismintás	tesztelés”).	

	

2.7.2.	Adatszerkezetek	és	algoritmusok	

Az	„Adatszerkezetek	és	algoritmusok”	tantárgy	keretében	tanultak	több	ponton	is	

kapcsolódnak	a	 szakdolgozat	 témájához.	Közvetlenül	 az	 embedding	alapelvekhez	 (2.1)	

kötődnek	a	mátrixok	 és	 vektorok,	 amelyekkel	 a	modellek	 a	 szemantikai	 kapcsolatokat	

reprezentálják.	 Emellett	 a	 tantárgy	 további	 elemei	 a	 dolgozat	 más	 részeihez	

kapcsolódnak:		

• A	 kísérletek	 kiértékelése	 során	 kombinatorikai	 kérdések	 merültek	 fel	 a	

lehetséges	triádok	számának	meghatározása	során	az	„3.3.4.	A	kollaborációs	

partnerek	és	a	JUDGE	kiválasztása”	fejezetben.		

• A	Pareto-front	számítás	algoritmikus	alapjai	relevánsak	voltak	az	optimális	

modellkombinációk	kiválasztásához	„3.3.4.1.	A	Pareto-triádok	kiválasztása”.		

	 31.	

	

2.7.3.	A	jog	szerepe	a	modern	társadalmakban	

Bár	 a	 dolgozat	 fókusza	 a	 rendszer	 technikai	 megvalósításán	 van,	 a	 platform	

tervezése	és	potenciális	jövőbeli	üzemeltetése	kapcsán	felmerülnek	jogi	és	adatbiztonsági	

kérdések	 is.	 „A	 jog	 szerepe	 a	 modern	 társadalmakban”	 tantárgy	 keretében	 tanultak	

relevánsak	 lehetnek	 például	 a	 platform	 nevének	 és	 arculatának	 védjegyoltalma	

szempontjából,	 amelyre	 a	 „3.2.1.	A	platform	elnevezése,	 logó,	 domain,	 védjegy”	 fejezet	

utal.	A	 rendszer	hozzáférési	 tokenekkel	dolgozik	 (API-kulcsok,	Bearer	 token),	 amelyek	

kezelése	 adatbiztonsági	 és	 jogi	 felelősség	 (hozzáférés-naplózás,	 jogosultságkezelés);	

ennek	 technikai	 implementációját	 és	 biztonsági	 vonatkozásait	 a	 „3.2.10.	 Biztonság	 és	

kulcskezelés”	 fejezet	 részletezi.	 Az	 adatvédelem	 kérdése	 a	 naplózás	 kapcsán	 is	

érintőlegesen	megjelenik	„3.2.12.	Naplózás	és	adatvédelem”.	

2.7.4.	Adatbázisok	

A	 kísérleti	 fázisban	 Excel-t	 használtam	 „mini	 adatbázisként”	 (ennek	 gyakorlati	

alkalmazása	 látható	 a	 „3.2.7.	 Batch	 Runner	 modul”	 és	 az	 „3.3.	 Kismintás	 tesztelés”	

fejezetekben),	 de	 a	 rendszer	 természetéből	 adódóan	 a	 későbbi	 fázisokban	 relációs	

adatbázisra	 kell	 váltani	 (lásd	 „3.2.13.5.	Adatbázis	 kapcsolat”	 fejezet).	Az	 „Adatbázisok”	

tantárgy	 keretében	 tanult	 adatszervezési,	 normalizálási,	 lekérdezés-optimalizálási	 és	

jogosultságkezelési	 alapelvek	 adják	meg	 az	 elméleti	 hátteret	 ahhoz,	 hogy	 a	 prototípus	

hogyan	nőhet	ki	egy	valódi,	skálázható	adatbázis-háttérré.	

2.7.5.	Az	Elektronika	fizikai	alapjai	és	az	Elektronikus	áramkörök	

Az	 „Elektronika	 fizikai	 alapjai”	 és	 az	 „Elektronikus	 áramkörök”	 tantárgyak	

ismeretanyaga	szorosan	összefüggnek	egymással,	így	kapcsolatukat	együtt	tárgyalom.	

	Bár	az	AiFusion	platform	egy	szoftveres	rendszer,	működése	 fizikai	hardvereken	

(CPU	(Central	Processing	Unit)	/GPU	(Graphics	Processing	Unit)-kon,	memórián,	hálózati	

eszközökön)	alapul.	A	képzés	során	tanultak	–	mint	az	áramfelvétel,	hőtermelés,	hűtés,	

memória-sávszélesség,	 jeltovábbítás	 fizikai	 korlátai,	 valamint	 a	 stabil	 tápellátás,	

feszültségstabilizálás	 (VRM	 (Voltage	 Regulator	 Module)),	 szűrés	 és	 az	 EMI	

	 32.	

(electromagnetic	 interference)-zaj	minimalizálása	 –	 adják	meg	 azt	 a	 kontextust,	 amely	

meghatározza	a	rendszer	valós	teljesítményének	és	skálázhatóságának	felső	határait.	A	

megbízható	 áramköri	 működés	 közvetlenül	 befolyásolja	 a	 számítások	 sebességét	 és	

hibamentességét;	a	nem	megfelelő	működés	például	teljesítménycsökkenést	(throttling)	

okozhat,	ami	torzíthatja	az	„3.3.	Kismintás	tesztelés”	során	mért	futási	időket	és	ronthatja	

a	rendszer	általános	megbízhatóságát.		

2.7.6.	Felhasználói	interfészek	és	vizualizáció	

Az	 AiFusion	 platform	 fontos	 része	 a	 webes	 frontendből	 (lásd	 „3.2.6.	 Frontend	

architektúra”).	 Az	 itt	 alkalmazott	 megoldásokhoz	 –	 több	 modell	 válaszának	 érthető	

megjelenítése,	az	eredmények	összehasonlítását	segítő	 táblázatok	és	vizualizációk	–	az	

elméleti	alapot	a	„Felhasználói	 interfészek	és	vizualizáció”	tantárgy	biztosította.	A	cél	a	

könnyű	használhatóság	és	az	eredmények	gyors	áttekinthetősége	volt,	ami	az	 „3.3.5.	A	

kimeneti	 eredmények	 tárolása,	 kiértékelése”	 fejezetben	 bemutatott	 Excel	 táblákban	 is	

tükröződik.	

2.7.7.	Hálózatok	és	számítógép	architektúrák	

A	 „Hálózatok	 és	 számítógép-architektúrák”	 tantárgy	 ismeretanyaga	 szintén	

alapvető	 a	 rendszer	 megvalósításához.	 Az	 AiFusion	 platform	 több	 gépen,	 hálózaton	

keresztül	 hív	 külső	 AI-szolgáltatásokat	 (API-kat),	 így	 a	 sávszélesség	 és	 a	 hálózati	

késleltetés	közvetlenül	befolyásolja	az	API-hívások	sebességét	és	a	rendszer	válaszidejét,	

ami	 a	 „3.3.	 Kismintás	 tesztelés”	 során	 mért	 időeredményekben	 is	 megmutatkozik.	

Emellett	a	rendszer	 futtatásához	használt	CPU	architektúra	és	a	memória-sávszélesség	

adják	 meg	 a	 helyi	 számítások	 (pl.	 a	 backend	 vagy	 a	 batch	 runner	 futtatása)	

teljesítménykorlátait.	

2.7.8.	Informatikai	védelem	és	biztonság	

Az	„Informatikai	védelem	és	biztonság”	tantárgy	alapelvei	szintén	megjelennek	az	

AiFusion	 platform	 tervezésében	 és	 implementációjában.	 A	 rendszer	 hozzáférési	

tokeneket	 (Bearer	 token,	 API-kulcsok)	 használ	 az	 illetéktelen	 hozzáférés	

megakadályozására.	Bár	a	prototípus	jelenleg	nem	használja,	a	jövőbeli	fejlesztések	során	

elengedhetetlen	 a	 titkosított	 HTTPS	 (Hypertext	 Transfer	 Protocol	 Secure)	 kapcsolat	

	 33.	

alkalmazása.	A	kérések	és	válaszok	naplózása	és	auditálása,	valamint	az	érzékeny	adatok	

(pl.	 API	 kulcsok)	 maszkolása	 vagy	 biztonságos	 kezelése	 szintén	 kulcsfontosságú	

szempontok.	Ezek	 technikai	megvalósítására	 a	 „3.2.10.	Biztonság	 és	 kulcskezelés”	 és	 a	

„3.2.12.	Naplózás	és	adatvédelem”	fejezetek	térnek	ki	részletesebben.	

2.7.9.	Operációs	rendszerek	

Az	 „Operációs	 rendszerek”	 tantárgy	 adja	meg	 azt	 az	 alapvető	 kontextust,	 amelyben	 az	

AiFusion	platform	fut.	A	rendszer	komponensei	(backend,	frontend,	batch	runner)	nem	

natívan	futnak	a	hardveren,	hanem	operációs	rendszereken.	A	fejlesztés	során	konkrétan	

Ubuntu	Server	és	macOS	operációs	rendszereket	használtam,	ahogy	azt	a	„3.2.2.	Fejlesztői	

környezet”	fejezet	részletezi.	Az	Operációs	Rendszer	(Operating	System	–	a	továbbiakban:	

OS)	 által	 biztosított	 szolgáltatások	 (folyamatkezelés,	 memóriakezelés,	 hálózatkezelés)	

alapvetőek	a	„3.2.	Rendszerfelépítés	és	implementáció”	során	leírt	szoftverkomponensek	

működéséhez.	

2.7.10.	Programozás	

A	 „Programozás"	 tantárgy	 alapvető	 ismereteket	 tárgyal	 a	 projekt	 konkrét	

megvalósításához:	 a	 Pythonos	 Flask	 backend	 („3.2.5.	 Backend	 architektúra”),	 a	 React	

frontend	(„3.2.6.	Frontend	architektúra”)	és	a	batch-runner	szkript	(„3.2.7.	Batch	Runner	

modul”)	elkészítéséhez.	A	projekt	jól	mutatja	az	API-hívások	(„3.2.5.2.	API	végpontok	és	

hitelesítés”,	 „3.2.6.1.	Kommunikáció	a	backenddel”),	 a	hibakezelés,	 a	naplózás	 („3.2.12.	

Naplózás	 és	 adatvédelem”)	 és	 az	 automatizált	 futtatás	 („3.2.7.	Batch	Runner	modul...”)	

gyakorlati	megvalósítását.	

	

2.7.11.	Programozási	alapelvek	és	módszertanok	

A	 „Programozási	 alapelvek	 és	 módszertanok"	 segítettek	 a	 rendszer	 átlátható	 és	

bővíthető	kialakításában.	Ennek	elemei	a	moduláris	felépítés,	a	rétegezés	és	a	separation	

of	 concerns	 elve	 („3.2.3.	 Architektúra	 áttekintése...”).	 Következetes	 nevezéktant	

alkalmaztam	 („3.2.8.	 Nevezéktani	 konvenciók”),	 és	 figyeltem	 a	 naplózásra	 („3.2.12.	

Naplózás	és	adatvédelem”)	és	hibakezelésre.	A	verziókezelést	Git	rendszerrel	végeztem.	

	 34.	

Az	 automatizált	 futtatást	 és	 mérést	 a	 batch-runner	 („3.2.7.	 Batch	 Runner	 modul...”)	

biztosítja,	a	skálázhatóságot	és	 tesztelhetőséget	pedig	a	 tiszta	 interfészek	és	adapterek	

(„3.2.5.1.	Modulstruktúra	és	adapterek")	segítik	

2.7.12.	Rendszermodellezés	

A	 „Rendszermodellezés"	 eszköztára	 segített	 a	 rendszer	 működésének	

vizualizálásában	 és	 megértésében.	 A	 rendszer	 működése	 adat-	 és	 vezérlésáramlási	

diagramokkal	ábrázolható	(4.	ábra),	hasznos	 lehet	a	szekvenciadiagram	a	kérés–válasz	

lépésekhez	(„3.2.6.1.	Kommunikáció	a	backenddel”)	és	az	állapotgép	a	futások	státuszaira.	

A	 komponensdiagram	 (adapterek,	 API-interfész,	 batch-runner)	 (4.	 ábra)	 segít	 a	

felelősségek	tiszta	szétválasztásában	és	a	bővíthetőség	megtervezésében.	

2.7.13.	Rendszertervezés	

A	 „Rendszertervezés"	 elvei	 alapján	 a	 megoldás	 rétegzett	 felépítésű	 (frontend,	

backend,	adapterek,	judge-logika),	egyértelmű	felelősségi	körökkel	(„3.2.3.	Architektúra	

áttekintése...”).	A	követelményekből	(„3.1.	Követelmények	és	Use-case”)	indultam,	majd	

ezekhez	 terveztem	 az	 interfészeket	 („3.2.5.1.	 Modulstruktúra	 és	 adapterek”),	 az	

adatáramlást	(„3.2.4.	Adatáramlás	és	komponensek	együttműködése”)	és	a	hibakezelést.	

A	skálázhatóságot	bővíthető	modulokkal	és	a	jövőben	microservice-irányú	szétbontással	

biztosíthatjuk	(„3.2.13.3.	Infrastruktúra	és	skálázhatóság”).	

2.7.14.	Szoftverarchitektúrák	

A	 „Szoftverarchitektúrák"	 tantárgy	 ismeretei	 tükröződnek	 a	 rendszer	 rétegzett	

felépítésében	(frontend–backend–adapterek)	(„3.2.3.	Architektúra	áttekintése”).	A	külső	

LLM-szolgáltatókhoz	 az	 adapter	 minta	 illeszkedik	 („3.2.5.1.	 Modulstruktúra	 és	

adapterek”),	 a	 bírói	 lépés	 pedig	 orchestrator	 szerepet	 tölt	 be	 (jelenleg	 a	 frontenden,	

„3.2.6.2.	 Párhuzamos	 lekérdezések...”).	 A	 skálázásnál	 a	 microservice	 irány	 is	 felmerül	

(„3.2.13.3.	 Infrastruktúra	 és	 skálázhatóság”).	 A	 megbízhatóságot	 erősítő	 elemek	 (pl.	

observability)	a	jövőbeli	fejlesztések	részei	lehetnek.	

	 35.	

2.7.15.	Szoftvertesztelés	

A	 „Szoftvertesztelés"	 fontosságát	 mutatja	 a	 batch	 runner	 („3.2.7.	 Batch	 Runner	

modul...”)	alkalmazása	a	tömeges	vizsgálatokhoz	(„3.3.	Kismintás	tesztelés”).	Ez	lehetővé	

teszi	 a	 pontosság,	 idő	 és	 költség	mérését,	 valamint	 a	 regressziós	 tesztek	 futtatását	 új	

verziók	bevezetésekor.	A	működés	alapvető	ellenőrzése	(endpoint	hívások,	hibakezelés,	

jogosultság)	manuális	és	implicit	tesztekkel	történt	a	fejlesztés	során.	

2.7.16.	Szoftverüzemeltetés	

Bár	a	projekt	jelenleg	prototípus	fázisban	van,	a	„Szoftverüzemeltetés"	szempontjai	már	

most	 relevánsak	 a	 jövőre	 nézve.	 A	 stabil	 működéshez	 és	 folyamatos	 felügyelethez	

monitoring	 (idő,	hiba,	 költség),	 logolás	 („3.2.12.	Naplózás	és	adatvédelem”)	és	 riasztás	

szükséges.	Fontos	a	rendszeres	frissítés,	a	biztonságos	kulcskezelés	(„3.2.10.	Biztonság	és	

kulcskezelés”),	a	skálázás	és	az	automatizált	deploy	(Folyamatos	integráció	/	Folyamatos	

szállítás	 (Continuous	 Integration	/	Continuous	Deployment	–	a	 továbbiakban:	CI/CD)),	

amelyek	a	„3.2.13.	Jövőbeli	fejlesztési	irányok”	között	is	szerepelnek.	

2.7.17.	Komplex	társadalomtudományi	ismeretek	

A	rendszer	többcélú	optimalizációt	kezel	(pontosság–költség–idő),	amelyet	Pareto-

szemlélettel	 és	 triád-alapú	 aggregálással	 tesz	 mérhetővé;	 a	 triádok	 sikerrátáját	 a	

„legalább	egy	helyes”	(parallel_or)	szabály	alapján	számítjuk,	a	bírói	(JUDGE)	modul	pedig	

az	ellentmondó	kimenetek	feloldására	szolgál.	Ez	a	megközelítés	 lehetővé	teszi,	hogy	a	

technikai	 eredményeket	 társadalomtudományi	 szempontból	 is	 értelmezzük:	 a	

kompromisszumok	(trade-offok)	számszerűsíthetők,	a	döntési	elvek	átláthatóvá	válnak,	

és	reprodukálható	módon	összevethetők.	

Szubjektív	meglátásom	szerint	a	társadalomban	-	a	jelenleg	is	tapasztalható	kezdeti	

lelkesedés	mellett	 -	kialakulóban	van	egyfajta	bizalmatlanság	és	bizonytalanság	a	nagy	

nyelvi	modellekkel	(köznyelvben:	„MI”)	szemben.	Mivel	a	LLM-rendszerek	átláthatósága	

és	 megértése	 még	 a	 szakértők	 számára	 is	 kihívás,	 a	 hozzáértő	 társadalmi	 réteg	

felelőssége,	 hogy	 közérthetően	 tájékoztassa	 a	 többségi	 társadalmat	 a	működésről	 és	 a	

megbízhatóságról.	Ezt	a	közérthető	tájékoztatást	és	a	megértést	kifejezetten	segíthetik	az	

olyan	 rendszerek	 által	 generált	 összehasonlítások	 és	 statisztikák,	 mint	 az	 AiFusion:	 a	

	 36.	

platform	standardizált	protokollok	mentén	képes	több	LLM	összehasonlító	értékelésére,	

rangsorolására	és	a	torzítások/hibák	feltárására.	Rendkívül	fontosnak	tartom	a	LLM-ek	

vizsgálatát	 megbízhatóság	 és	 előítéletesség	 szempontjából;	 a	 több-modellű,	

összehasonlító	 elemzések	mintázatokat	 és	 statisztikákat	 szolgáltatnak	 ehhez,	 így	 adat-

alapú	beszélgetést	tesznek	lehetővé	a	társadalmi	kockázatokról	és	előnyökről.	

A	 fenti	 szempontok	 a	 rendszer	 társadalmi	 beágyazottságát	 és	 költség–haszon	

értelmezhetőségét	 erősítik:	 az	 átlátható	mérőszámok	 és	 a	 reprodukálható	módszertan	

elszámoltathatóbbá	 teszik	 a	 döntéseket,	 és	 alapot	 adnak	 a	 felelős,	 tájékozott	

közbeszédhez	a	generatív	MI	(Mesterséges	Intelligencia)	alkalmazásáról.	

2.7.18.	Európai	civilizáció	és	identitás		

A	 rendszertervezésben	 következetesen	 érvényesülnek	 az	 európai	 alapelvek:	

adatvédelem,	 átláthatóság,	 felelősségre	 vonhatóság.	 Az	 AiFusion	 ennek	 megfelelően	

reprodukálható	 futtatásokat,	 visszakövethető	 döntési	 lépéseket	 (napló,	 JSON/Excel	

kimenetek)	és	ellenőrizhető	bírói	értékelést	biztosít.	A	többnézőpontos	mérlegelés	és	a	

konszenzusra	 törekvés	 intézményes	 európai	 döntéshozatali	 mintázatokkal	 rokon	

(testületi	mérlegelés,	vitakultúra,	indokolt	állásfoglalás).	

Közvetlen	szinergia	mutatkozik	a	4.5.	fejezetben	tárgyalt	jogi	rendszerek	LLM-alapú	

tesztelésével:	a	bírói	modul	és	a	triád-logika	panel-szerű	döntéstámogatást	tesz	lehetővé	

(különvélemények	kezelése,	többségi/döntési	szabályok,	 indoklás),	ami	a	jogi	döntések	

MI-támogatásában	 különösen	 fontos.	 A	 platform	 így	 nemcsak	 technikailag,	 hanem	

értékalapon	 is	 illeszkedik	az	európai	elvárásokhoz:	az	automatizált	értékelés	átlátható,	

auditálható	és	elszámoltatható	keretben	történik.	

2.7.19.	Emberi	viselkedés	és	kommunikáció	

Az	 AiFusion	 többmodellű	 működése	 (triád	 +	 bíró/JUDGE)	 egy	 többszereplős	

kommunikációs	helyzetet	modellez:	különböző	„beszélők”	(LLM-ek)	egymástól	független	

válaszai	 kerülnek	 összevetésre,	 majd	 egy	 bírói	 modul	 visszacsatolással	 és	

konszenzuskereséssel	egységes,	indokolható	kimenetet	állít	elő.	Ez	a	folyamat	jól	rímel	az	

emberi	 kommunikáció	 kulcselemeire:	 a	 félreértések	 kezelése,	 a	 torzítások	 (bias)	

csökkentése,	a	bizalomépítés	és	a	közös	jelentésalkotás.	

	 37.	

Szubjektív	megítélésem	 szerint	 a	 társadalmi	 bizalmatlanság	 csökkentéséhez	nem	

elég	az	egyes	LLM-ek	teljesítményét	állítani;	szükség	van	közérthető,	összehasonlítható	

eredményekre	és	magyarázható	döntési	folyamatokra.	A	platform	naplózása	és	a	bíró	által	

készített,	 lépésenként	 rekonstruálható	 összegzés	 ezt	 a	 kommunikációs	 átláthatóságot	

szolgálja	-	emberi	helyzetekhez	hasonlóan,	ahol	a	vitában	végül	egy	moderált,	 indokolt	

álláspont	születik.	

2.7.20.	Vállalati	gazdaságtan	

Az	„Vállalati	gazdaságtan"	tantárgy	keretében	tanultak	adnak	alapot	ahhoz,	hogy	az	

AiFusion	rendszert	ne	csak	technikai,	hanem	üzleti	szempontból	is	értékeljük.	A	rendszer	

építése	 során	 felmerült	 annak	 potenciális	 piaci	 hasznosíthatósága,	 ami	 a	 brandépítés	

(„3.2.1.	 A	 platform	 elnevezése...”)	 és	 egy	 lehetséges	 üzleti	 modell	 kialakításának	

fontosságát	veti	fel	a	jövőre	nézve	(„3.2.13.4.	Jogi	háttér	szerkezete”).	

2.7.21.	Vezetési	és	vállalkozási	ismeretek	

A	 „Vezetési	 és	 vállalkozási	 ismeretek”	 tantárgy	 a	 projekt	 fejlesztési	

megközelítéséhez	kapcsolódik.	A	rendszer	 fejlesztése	az	Minimálisan	életképes	 termék	

(Minimum	Viable	Product	–	a	továbbiakban:	MVP)	elvét	követte	(kezdetben	Excel	alapú	

kiértékelés,	 majd	 prototípus	 fejlesztése),	 amelyet	 iteratív	módon,	 a	 mért	 eredmények	

alapján	 lehet	 tovább	 skálázni	 („3.2.13.	 Jövőbeli	 fejlesztési	 irányok”).	 A	 projekt	

megvalósítása	során	fontos	szempont	volt	a	prioritáskezelés,	a	kockázatkezelés	(költség,	

idő,	 minőség)	 és	 az	 eredmények	 érthető	 kommunikációja,	 például	 egyszerű	 üzleti	

mutatók	(költség/helyes	válasz)	segítségével,	amelyeket	az	„3.3.	Kismintás	tesztelés”	és	a	

„4.	Vita”	fejezetek	érintenek.	

2.7.22.	Innovatív	információs	és	kommunikációs	technológiák	az	

IT-biztonság	kapcsán	

Ez	 a	 tantárgy	 rávilágít	 azokra	 a	 modern	 eszközökre,	 amelyeket	 a	 rendszer	

biztonságának	növelésére	lehetne	használni	a	 jövőben.	Ilyen	a	titkosított	API-kapcsolat	

(HTTPS),	 a	 biztonságos	 secret-kezelés,	 a	 naplózás	 és	 riasztás	 („3.2.12.	 Naplózás	 és	

adatvédelem”),	valamint	olyan	újabb	technikák,	mint	a	rate-limit,	az	anomaly	detection	

	 38.	

(szokatlan	 API-hívások	 kiszűrése)	 vagy	 a	 kulcsrotáció	 („3.2.11.	 A	 jelenlegi	 megoldás	

biztonsági	korlátai”).	A	cél	a	szolgáltatás	biztonságának	fenntartása	a	rendszer	fejlődése	

és	skálázódása	során.	

2.7.23.	IT-biztonsági	fejlesztések	minőség-	és	

projektmenedzsmentje	

A	 projekt	 fejlesztése	 során	 -	 bár	 nem	 formális	 keretek	 között	 -	 törekedtem	 a	

biztonságos	 Szoftverfejlesztési	 életciklus	 (Software	 Development	 Lifecycle	 –	 a	

továbbiakban:	SDLC)	alapelveinek	követésére:	a	követelmények	meghatározásától	(„3.1.	

Követelmények	és	Use-case”)	a	tervezésen	(„3.2.	Rendszerfelépítés	és	implementáció”)	és	

fejlesztésen	 át	 a	 tesztelésig	 („3.3.	 Kismintás	 tesztelés”).	 A	 minőség	 biztosítását	 a	 kód	

áttekinthetősége	 („3.2.8.	 Nevezéktani	 konvenciók”),	 a	 tesztelési	 logika	 („3.2.7.	 Batch	

Runner	 modul...”)	 és	 az	 alapvető	 biztonsági	 megfontolások	 („3.2.10.	 Biztonság...”)	

jelentették.	 A	 projektet	 a	 prioritások	 és	 a	 kockázatok	 (pl.	 költségkeret	 túllépése,	 API	

hibák)	figyelembevétele	vezérelte.	

2.7.24.	Mesterséges	intelligenciák	az	IT-biztonság	területén	

Bár	az	AiFusion	jelenleg	nem	alkalmaz	MI-t	önmaga	biztonságának	növelésére,	ez	a	

tantárgy	rámutat	a	jövőbeli	lehetőségekre.	Gépi	tanulással	lehetne	anomáliákat	észlelni	a	

rendszer	 használatában	 (pl.	 szokatlan	 API-hívások,	 költség-tüskék	 a	 naplók	 alapján	 –	

„3.2.12.	 Naplózás	 és	 adatvédelem”).	 Érdekes	 lehetőség,	 hogy	 az	 AiFusion	 kollaboratív	

modellje	akár	a	biztonsági	események	verifikálására	is	használható	lenne:	ha	több	(akár	

biztonsági	 fókuszú)	 modell	 elemez	 egy	 logot	 vagy	 hálózati	 forgalmat,	 az	 eredmények	

összevetése	csökkenthetné	a	téves	riasztások	(false	positive)	számát.	

2.7.25.	Tudásmenedzsment	az	IT-biztonság	területén	

Ez	 a	 tantárgy	 arra	 ösztönöz,	 hogy	 a	 rendszer	működése	 során	 gyűjtött	 adatokat	

(logok,	 futási	 eredmények	 –	 „3.2.12.	 Naplózás	 és	 adatvédelem.”,	 „3.3.5.	 A	 kimeneti	

eredmények	tárolás,	kiértékelése”)	ne	csak	tároljuk,	hanem	tudásbázisként	használjuk.	A	

tapasztalatokból	 (pl.	 melyik	 modell	 hajlamos	 hibázni,	 milyen	 promptok	 működnek	

jól/rosszul)	 leszűrt	 szabályok	és	best	practice-ek	visszacsatolhatók	a	 rendszerbe	 (pl.	 a	

	 39.	

promptok	finomításával,	a	bíró	modell	utasításainak	pontosításával	–	„3.2.13.1.	Működési	

logikák	kibővítése”),	így	a	rendszer	idővel	hatékonyabbá	és	megbízhatóbbá	válhat.	

2.8.	A	szakirodalmi	háttér	összegzése	

Összességében	 az	 AiFusion	 architektúra	 a	 2.1–2.7	 alfejezetekben	 ismertetett	

elméleti	 fogalmak	 integrált	 alkalmazása:	 használja	 a	 LLM-ek	 belső	 embedding-alapú	

tudását,	a	 tokenizációs	és	generálási	mechanizmusokra	épít,	 szabályozható	kreativitási	

szintet	 enged	 (pl.	 a	 párhuzamos	 modellek	 eltérő	 temperature	 értékei	 révén),	 és	 az	

ensemble	megközelítést	egy	bíró	modell	formájában	valósítja	meg.	Célja,	hogy	a	kollektív	

AI-válaszadás	révén	mérsékelje	az	egyes	modellek	korlátait	(hallucináció,	bias),	és	jobb	

minőségű,	 megbízhatóbb	 választ	 adjon	 a	 felhasználóknak,	 mintha	 bármely	 egy	

modellre	hagyatkozna.	

	

	

	

	

	 	

	 40.	

3.	Saját	fejlesztés	

Ebben	a	fejezetben	az	AiFusion	platform	saját	fejlesztésű	megoldását	mutatom	be,	

kiindulva	 a	 rendszerrel	 szemben	 támasztott	 követelményekből	 és	 egy	 tipikus	

felhasználási	 forgatókönyvből.	 Ezek	 adják	 a	 későbbi	 architekturális	 és	 implementációs	

döntések	értelmezési	keretét.	

3.1.	Követelmények	és	Use-case	

Ebben	a	fejezetben	bemutatom	az	AiFusion	platform	legfontosabb	követelményeit,	

valamint	 ismertetek	egy	 tipikus	use-case	 forgatókönyvet,	 amely	 szemlélteti	 a	 rendszer	

működését	 a	 gyakorlatban.	 A	 követelmények	 között	 szerepelnek	 a	 főbb	 funkcionális	

elvárások	–	 így	 több	nagy	nyelvi	modell	egyidejű	használata	és	 integrációja	–,	 továbbá	

biztonsági	 és	 felhasználói	 interfészre	 vonatkozó	 igények,	 valamint	 a	 rendszer	 egyedi,	

kutatást	 támogató	 funkciói.	 Ezt	 követően	 egy	 jellemző	 felhasználási	 eset	 leírása	

következik,	amely	lépésről	lépésre	bemutatja,	hogyan	zajlik	egy	kérdés	megválaszolása	az	

AiFusion	segítségével.	

3.1.1.	Rendszerkövetelmények	

A	rendszerkövetelmények	részletes	bemutatása	során	először	azokra	a	funkcionális	

elvárásokra	térek	ki,	amelyek	a	több	nagy	nyelvi	modell	egyidejű	bevonására	és	a	kollektív	

válaszadás	megvalósítására	vonatkoznak.	

3.1.1.1.	Több	modell	egyidejű	bevonása	

Alapvető	 funkcionális	 követelmény,	 hogy	 a	 rendszer	 egy	 felhasználói	 kérdés	

megválaszolásához	egyszerre	több	különböző	nagy	nyelvi	modellt	(LLM)	tudjon	igénybe	

venni,	majd	az	eredményeket	egyesítse.	Ennek	érdekében	szükséges	egy	bíró	komponens	

alkalmazása,	amely	értékeli	a	párhuzamosan	futó	modellek	válaszait,	és	kiválasztja	vagy	

összevonja	 a	 legjobb	 elemeket	 egy	 végső	 válaszba.	 Ez	 a	 kollektív	 AI-válaszadás	

koncepciója,	 amelytől	 jobb	 minőségű	 és	 megbízhatóbb	 eredményeket	 remélek.	 (A	

megoldás	 lényege	 tehát	 egy	 master–slave	 modellstruktúra	 alkalmazása:	 több	 modell	

generál	 válaszokat,	 egy	magasabb	 szintű	 “bíró”	modell	 pedig	 eldönti,	 melyik	 legyen	 a	

végső	output.)	

	 41.	

3.1.1.2.	Integráció	különböző	AI	szolgáltatókkal	

A	backendnek	 támogatnia	kell	 több	külső	AI	szolgáltató	 integrációját	 is,	egységes	

interfészen	keresztül.	Jelenlegi	prototípusban	elvárás	volt,	hogy	az	OpenAI	ChatGPT,	az	

Anthropic	 Claude,	 a	DeepSeek	 és	 a	Google	 Gemini	 API	 egyaránt	 elérhető	 legyen	 a	

rendszeren	 keresztül.	 A	 különböző	 szolgáltatók	 illesztését	moduláris	módon,	 egységes	

felületen	 keresztül	 kell	megoldani,	 hogy	 a	 kliensoldali	 használat	 a	modelltől	 független	

maradjon.	 Ez	 biztosítja	 a	 rendszer	 bővíthetőségét	 is	 –	 új	 modellek	 viszonylag	 kis	

ráfordítással	 hozzáadhatók	 a	 jövőben,	 amennyiben	 az	 egységes	 interfészen	 keresztül	

követik	a	meglévő	adapterek	mintáját.	

Biztonság	és	jogosultságkezelés	

Követelmény	 egy	 egyszerű,	 de	 hatékony	 token	 alapú	 autentikációs	mechanizmus	

bevezetése	a	rendszer	illetéktelen	használatának	megakadályozására.	Ennek	biztosítania	

kell,	 hogy	 kizárólag	 a	 jogosult	 (a	 megfelelő	 tokennel	 rendelkező)	 felhasználók	

férhessenek	hozzá	az	API	végpontokhoz.	A	megvalósítás	technikai	részleteit,	beleértve	a	

token	generálását	és	ellenőrzését,	a	„3.2.10.	Biztonság	és	kulcskezelés”	fejezet	tárgyalja.	

3.1.1.3.	Erőforrás-	és	költségfelügyelet	

Mivel	 a	 külső	 AI	 szolgáltatások	 használata	 költséges	 (általában	 token-alapú	

díjszabással),	a	rendszernek	figyelemmel	kell	kísérnie	a	lekérdezések	erőforrásigényét	és	

becsült	költségét.	Követelmény,	hogy	minden	egyes	API	válasz	esetén	rögzítésre	kerüljön	

a	felhasznált	tokenek	száma	(beviteli,	kimeneti	és	összesen),	így	elemezhető	a	használat	

költsége	és	hatékonysága.	Célszerű	továbbá	lehetőséget	biztosítani	bizonyos	költségkeret	

vagy	 kvóta	 beállítására,	 és	 figyelmeztetést	 adni,	 ha	 egy	 felhasználó	 adott	 időszakban	

túllépi	a	meghatározott	keretet.	Ezzel	garantálható,	hogy	a	 rendszer	használata	anyagi	

szempontból	 kontrollálható	 maradjon,	 ami	 különösen	 fontos	 lehet,	 ha	 a	 szolgáltatást	

hosszabb	 távon,	 online	 formában	 üzemeltetik.	 (Megjegyzendő,	 hogy	 a	 jelenlegi	

implementációban	nincs	még	automatikus	korlát	vagy	leállító	mechanizmus	beépítve	–	a	

token	 felhasználási	 adatok	 gyűjtése	 azonban	 az	 első	 lépés	 egy	 későbbi	 monitorozó	

modulhoz.)	

	 42.	

3.1.1.4.	Felhasználói	felület	és	UX	követelmények	

A	 kliensoldali	 alkalmazásnak	 áttekinthető,	 könnyen	 használható	 felületet	 kell	

nyújtania.	 A	 felhasználó	 számára	 lehetővé	 kell	 tenni	 a	 lekérdezés	 paramétereinek	

testreszabását,	 többek	 között:	 a	 használandó	 AI	 modellek	 kiválasztását	 (pl.	 legördülő	

listából	 ChatGPT,	 Claude,	 stb.),	 a	 generált	 válasz	 hosszát	 és	 stílusát	 befolyásoló	

paraméterek	beállítását	(mint	a	maximális	token-szám,	kreativitás/temperature	érték),	

illetve	 opcionális	 módosítók	 megadását	 a	 kéréshez	 (pl.	 “Answer	 shortly”	 a	 rövidebb	

válaszért).	Fontos	továbbá,	hogy	a	párhuzamosan	futó	modellek	válaszai	egymás	mellé	

állíthatóan	 összehasonlíthatók	 legyenek	 a	 felületen	 –	 az	 alkalmazás	 jelenlegi	 változata	

lehetővé	 teszi,	 hogy	 a	 felhasználó	 egy	 nézetben	 lássa	 az	 összes	 kapott	 választ,	

megkönnyítve	ezzel	az	eredmények	összevetését.	A	kezelőfelületnek	reszponzívnak	kell	

lennie	 (különböző	 eszközökön,	 pl.	 laptopon	 és	 mobileszközön	 egyaránt	 megfelelően	

működjön),	és	a	visszajelzések	alapján	érdemes	vizuális	segítséget	nyújtani	az	eltérések	

kiemelésére	 a	 modellek	 válaszai	 között	 (pl.	 kiemelni	 a	 különbségeket	 színnel	 vagy	

formázással).	 Ezek	 a	 felhasználói	 élmény	 (User	 Experience	 –	 a	 továbbiakban:	 UX)	 -

szempontok	növelik	a	felhasználói	élményt	és	a	rendszer	átláthatóságát,	és	már	a	tervezés	

során	figyelembe	lettek	véve	(bár	bizonyos	elemek	–	pl.	eltérések	kiemelése	–	még	további	

fejlesztést	igényelnek	a	prototípusban).	

3.1.1.5.	Kutatástámogató	funkció,	a	batch	feldolgozás	

Alapvető	 követelmény	 volt,	 hogy	 a	 rendszer	 támogassa	 a	 tömeges	 lekérdezések	

automatizált	futtatását	is,	kísérleti	vagy	elemzési	célokból.	Ez	lehetővé	teszi	nagyszámú	

kérdés	 szisztematikus	 végrehajtását	 különböző	 konfigurációk	 mellett,	 ami	

elengedhetetlen	 a	 modellek	 teljesítményének	 tudományos	 igényű	 kiértékeléséhez.	 A	

funkció	részletes	megvalósítását	a	„3.2.7.	Batch	Runner	modul”	fejezet	ismerteti.	

3.1.2.	Use-case,	vagyis	Felhasználási	eset	

Use-case	 forgatókönyv	 –	 Kérdés	 megválaszolása	 több	 modellel:	 Egy	 tipikus	

használati	 esetben	 a	 felhasználó	 először	 bejelentkezik	 a	 webalkalmazásba	 (a	 demó	

rendszerben	 fix	 teszt	 felhasználónév/jelszó	 párossal).	 Sikeres	 autentikáció	 után	 a	

felhasználó	 a	 lekérdezési	 felületen	 beír	 egy	 kérdést	 a	 rendszerbe.	 Itt	 lehetősége	 van	

kiválasztani,	 hogy	 mely	 AI	 modelleket	 vegye	 igénybe	 a	 válaszadáshoz	 –	 például	

	 43.	

kiválaszthatja,	 hogy	 a	 kérdést	 egyszerre	 küldje	 el	 ChatGPT-nek,	 Claude-nak	 és	

DeepSeek-nek	 –	 továbbá	 beállíthatja	 a	 választ	 befolyásoló	 paramétereket,	 mint	 a	

maximálisan	 felhasználható	 tokenek	 száma,	 a	 válasz	 kreativitása	 (temperature	 érték),	

illetve	 egyéb	 opciók	 (pl.	 “Answer	 shortly”	 a	 rövid	 válaszért,	 “Answer	 randomly”	 a	

véletlenszerűbb	stílusért).	Miután	a	felhasználó	konfigurálta	a	kérést,	a	„Küldés”	gombra	

kattintva	elindítja	a	folyamatot.	

A	kérdés	elküldése	után	a	háttérrendszer	először	autentikációt	végez	a	megadott	

API	token	alapján.	A	 lekérdezés	csak	akkor	folytatódik,	ha	a	 felhasználó	által	megadott	

Bearer	 token	 érvényes,	 ellenkező	 esetben	 a	 backend	 hibaüzenetet	 küld	 és	 a	 folyamat	

megszakad.	(A	prototípusban	a	felhasználó	a	bejelentkezés	után	egy	külön	mezőben	adja	

meg	 a	 szerver	 konzolján	 előzőleg	 generált	 token	 értékét.	Ha	 ez	 hiányzik	 vagy	hibás,	 a	

szerver	 401-es	 hibával	 azonnal	 visszautasítja	 a	 kérést	 –	 biztosítva,	 hogy	 csak	 jogosult	

felhasználó	indíthasson	lekérdezést	a	továbbiakban.	Amennyiben	a	token	rendben	van,	a	

backend	párhuzamos	API-hívásokat	indít	a	kiválasztott	modellek	felé.	Technikailag	a	

rendszer	egyszerre	küldi	ki	ugyanazt	a	kérdést	az	összes	megjelölt	LLM-nek,	kihasználva	

a	 párhuzamosítás	 adta	 sebességelőnyt.	 Ennek	 eredményeként	 mindegyik	 modell	

megkezdi	a	válasz	generálását	a	saját	környezetében.	

Miután	 a	 külön	 futó	 AI	 modellek	 egyedi	 válaszai	 beérkeznek	 a	 szerverhez,	 az	

AiFusion	rendszer	egy	külön	bíró	modellhez	fordul.	A	bíró	modell	bemenetéül	szolgál	az	

eredeti	kérdés,	valamint	az	összes	begyűjtött	válasz,	méghozzá	egy	speciális	prompt	

formájában	összeállítva.	Ez	a	prompt	tartalmazza	a	kérdést	és	például	felsorolásszerűen	

a	modellválaszokat,	és	utasítást	ad	a	bíró	szerepű	AI-nak,	hogy	döntsön	vagy	készítsen	

összefoglaló	 választ.	 A	 bíró	 AI	 a	 kapott	 információk	 alapján	 kiértékeli	 a	 válaszokat:	

kiválasztja	 közülük	 a	 legjobbnak	 ítélt	 választ,	 vagy	 pedig	 (a	 koncepció	 szerint)	 több	

válaszból	konszolidáltan	összeállít	egy	újat.	A	jelenlegi	implementáció	prototípusában	

a	bíró	logika	egyszerűen	kiválasztja	a	számára	legoptimálisabb	választ	és	azt	adja	vissza,	

de	elviekben	megvan	a	lehetőség	arra	is,	hogy	a	bíró	összefésülje	a	több	modelltől	érkező	

információkat	egy	kombinált	válaszba.	Miután	a	bíró	modell	meghozta	a	döntést	és	előállt	

a	végső	válasszal,	ez	a	konszolidált	eredmény	visszajut	a	frontendhez.	

Az	 alkalmazás	kliensfelületén	ezután	megjelenik	a	végső	válasz,	 amelyet	 a	bíró	

modell	ítélete	alapján	választott	ki	a	rendszer.	A	felület	a	use-case	forgatókönyv	szerint	

lehetőséget	ad	arra	is,	hogy	a	felhasználó	megtekintse	az	egyes	modellek	válaszait	külön	

	 44.	

(például	egy	másik	nézetben	egymás	alatt	felsorolva),	így	átláthatóvá	válik,	melyik	modell	

milyen	 választ	 adott,	 és	 közülük	 melyiket	 (vagy	 mely	 részeket)	 emelte	 ki	 a	 bíró	

komponens.	(A	jelenlegi	prototípusban	az	összes	válasz	megtekintése	egy	közös	nézetben	

valósul	 meg,	 és	 az	 eltérések	 vizuális	 kiemelése	még	 fejlesztés	 alatt	 áll,	 de	 a	 tervezett	

funkció	 szerint	 a	 lényeges	 különbségek	 később	 jól	 láthatóan	 jelölhetők	 lesznek.)	 A	

felhasználó	 a	 választ	 áttekintve	 dönthet	 úgy,	 hogy	 módosít	 bizonyos	 beállításokon	 –	

például	növeli	a	kreativitás	paraméter	értékét,	vagy	kicseréli	az	egyik	használt	modellt	

egy	másikra	–	és	újra	futtatja	a	 lekérdezést	a	 jobb	eredmény	reményében.	Ily	módon	a	

rendszer	interaktív,	iteratív	folyamatot	biztosít:	a	felhasználó	kísérletezhet	a	különböző	

modellekkel	és	beállításokkal,	ami	hozzájárul	a	jobb	végeredmény	eléréséhez	és	egyben	

növeli	a	felhasználói	élményt.	 	

	 45.	

3.2.	Rendszerfelépítés	és	implementáció	

Ebben	 a	 fejezetben	 bemutatom	 az	 AiFusion	 platform	 architektúráját	 és	

megvalósítását.	 Ismertetem	 a	 master–slave–judge	 modellű	 felépítést,	 a	 komponensek	

(backend	 és	 frontend)	 együttműködését	 és	 az	 adatok	 áramlását	 a	 rendszeren	 belül.	

Részletesen	kitérek	a	backend	és	frontend	implementáció	főbb	elemeire	–	beleértve	az	

osztályokat,	modulokat	 és	 azok	 szerepét	 –,	 valamint	 bemutatom	 a	 batch-runner	 nevű	

modul	működését,	amely	a	rendszer	tesztelését	és	a	válaszok	kiértékelését	segíti.	Végül	

összefoglalom	 a	 projekt	 során	 alkalmazott	 nevezéktani	 konvenciókat	 a	 kód	

olvashatóságának	és	karbantarthatóságának	érdekében.	

3.2.1.	A	platform	elnevezése,	logó,	domain,	védjegy	

Minden	 vízióm	 kezdeti	 szakaszában	 fontos	 szempont	 a	 név	 kitalálása	 és	 a	 logó	

megtervezése.	A	név-logó	páros	egyfajta	konténerként	szolgál	gondolataimnak,	 segítve	

azok	rendszerezését.	

A	 platform	 nevét	 rövid,	 pár	 napig	 tartó	 gondolkodást	 követően	 „megtaláltam”.	

Fontosnak	tartom	kiemelni,	hogy	a	névválasztásnál	soha	nem	használok	gépi	segítséget,	

így	jelen	esetben	sem	használtam.	A	névnek	tisztán	gondolati	alapon	kell	„keletkeznie”,	

mert	tapasztalatom	szerint	ilyenkor	tudok	vele	a	legnagyobb	mértékben	azonosulni.	

A	logó	megtervezéséhez	már	az	OpenAI	Dall-E	rendszerét	használtam.	Az	eredetileg	

létrehozott	logót	Photoshop	segítségével	módosítottam	(vö.	1.	ábra).		

1.	ábra:	Az	AiFusion	platform	eredeti	generált	logója	(b)	és	
a	módosított,	végső	variáns	(j)	

Forrás:	chatgpt.com	/	saját	szerkesztés	

	 46.	

A	platform	nevének	megfelelő	„aifusion.hu”	domain	megvásárlásra	került,	jelenleg	

nincs	tartalom	a	domain	mögött.	

A	 logót	 érdemes	 ellátni	 védjegyoltalommal.	 Részletekért	 lásd:	 „1.5.4	 Költség-	 és	

teljesítményelemzés”.	

3.2.2.	Fejlesztői	környezet	

Ebben	az	alfejezetben	röviden	bemutatom	a	fejlesztés	során	használt	eszközöket.	

3.2.2.1.	Ubuntu	Server	

A	 rendszer	 fejlesztését	 egy	 külön	 az	 AiFusion-nek	 fenntartott	 Lenovo	 X280	

laptopon,	 Windows	 11	 alatt	 futó	 VirtualBoxban	 futtatott	 VM-ben,	 Ubuntu	 Server	 op.	

rendszer	alatt	kezdtem	el.	A	Python	kódokat	először	egyszerű	szövegszerkesztőben	írtam.	

A	fejlesztés	ebben	a	környezetben	megterhelő	és	improduktív	volt.	Sokszor	egyhuzamban	

csak	15-30	percet	tudtam	foglalkozni	a	fejlesztéssel	és	a	rendszerindítások	és	leállítások	

minden	 egyes	 alkalommal	 szükséges	 elvégzése	 súlyos	 perceket	 vett	 el	 a	 szűkös	

időkeretemből.	 Ezen	 felül	 a	 VM	 futtatása	 miatt	 a	 laptop	 akkumulátoros	 üzemideje	 is	

gyenge	volt	(maximum	2-3	óra).	

3.2.2.2.	macOS	

A	fejlesztés	durván	1/3-ánál	vásároltam	külön	a	projekt	fejlesztésének	céljára	egy	

MacBook	Air	M1	laptopot,	amelyen	már	lényeges	komfortosabb	környezetben	tudtam	a	

munkámat	elvégezni.	A	Python	kódokat	az	Ubuntu	Serverrel	azonos	módon,	terminálban	

tudtam	 futtatni,	 a	 kódolást	 kényelmesen,	 Visual	 Studio	 Code-ban	 folytattam.	 A	

hatékonyságom	jelentősen	nőtt,	ugyanis	a	képernyő	le-	és	felhajtásával	kiváltható	lett	a	

teljes	rendszerindítási	és	leállítási	protokoll,	a	munkámhoz	azonnal	vissza	tudtam	térni	

és	azt	azonnal	abba	tudtam	hagyni,	így	akár	a	pár	perces	holtidőimben	is	vissza	tudtam	

térni	a	fejlesztéshez.	Az	MacBook	akkumulátoros	üzemideje	a	fejlesztési	terhelés	mellett	

10+	óra.	

3.2.3.	Architektúra	áttekintése,	a	Master–Slave–Judge	modell	

Az	AiFusion	platform	jelenlegi	architektúrája	a	2.6	fejezetben	részletezett	master–

slave–judge	 elvet	 követi,	 amely	 egyfajta	 „fordított	 piramis”	 struktúrát	 eredményez:	 az	

	 47.	

alsó	szinten	több	különálló	modell	dolgozik	párhuzamosan,	míg	a	csúcson	egyetlen	modell	

hoz	döntést	a	 legjobb	válasz	kiválasztásáról.	Ennek	köszönhetően	a	végső	output	 több	

modell	 perspektíváját	 is	 figyelembe	 veszi,	 növelhetve	 a	 válasz	 megbízhatóságát	 és	

minőségét.	 (Például	 egy	 lehetséges	 forgatókönyvben	 első	 körben	 több	különböző	LLM	

generál	 választ,	majd	 egy	 bíró	 LLM	 ezek	 alapján	meghozza	 az	 ítéletet.)	 A	 bíró	modell	

tulajdonképpen	egy	meta-LLM,	amely	a	 többi	modell	válaszát	összesítve	hoz	döntést	–	

hasonlóan	ahhoz,	mintha	egy	ember	több	szakértő	véleményét	meghallgatva	választaná	

ki	 a	 legjobb	 megoldást.	 Ez	 a	 többlépcsős	 döntéshozó	 architektúra	 tudományos	

szempontból	is	érdekes,	mert	vizsgálható,	hogy	a	bíró	modell	mennyire	tudja	kiszűrni	az	

esetleges	 hibákat	 vagy	 ellentmondásokat	 a	 válaszok	 között,	 javítva	 a	 végeredmény	

minőségét.	

3.2.4.	Adatáramlás	és	komponensek	együttműködése	

A	 felhasználó	 kérdése	 a	 webes	 frontend	 felületen	 vagy	 a	 kötegelt	 feladatok	

futtatására	létrehozott	Batch	Runner	alkalmazáson	keresztül	jut	el	a	backend	szerverhez,	

amely	a	kérést	párhuzamosan	továbbítja	az	összes	kiválasztott	AI	modell	API-jához	(külső	

szolgáltatókhoz).	A	különböző	modellektől	kapott	eredményekből	végül	a	rendszer	egy	

egyesített	választ	állít	elő	egy	bírói	logika	segítségével.	A	jelenlegi	implementációban	ez	

az	 összevonás	 a	 frontenden	 történik:	 a	 kliensoldali	 alkalmazás	megvárja,	 amíg	 az	 első	

körben	beérkeznek	a	párhuzamos	modellválaszok,	majd	ezeket	egy	új	promptba	foglalva	

küldi	el	egy	kiválasztott	bíró	modellnek	értékelésre.	Így	a	backend	szempontjából	minden	

részfeladat	 külön	 API-hívásként	 valósul	 meg,	 de	 a	 felhasználó	 egy	 összefüggő	

folyamatként	érzékeli,	hogy	a	kérdésére	több	modell	együtt	ad	választ,	egy	utólagos	bírói	

döntéssel	 kiegészítve.	 Az	 architektúra	 három	 fő	 komponense	 tehát	 a	 backend	

(szerveroldal),	 a	 webes	 frontend	 (kliensoldal)	 és	 a	 kötegelt	 feladatok	 automatizált	

futtatására	szakosodott	Batch	Runner,	melyek	szorosan	együttműködve	valósítják	meg	a	

fent	leírt	folyamatot.	

Az	architektúrát	egy	áttekintő	diagram	is	szemlélteti	(vö.	5.	Ábra),	amelyen	látható	

a	 frontend	és	a	backend	kapcsolata,	 a	backend	komponensei	 (Flask	alapú	API-szerver,	

AIInterface	osztály,	adapter	modulok),	valamint	a	külső	AI	szolgáltatások.	Az	ábrán	nyilak	

jelzik	a	kérés–válasz	folyamat	irányát	a	rendszerben	(frontend	→	backend	→	külső	API	→	

backend	 →	 frontend).	 Ezzel	 a	 felépítéssel	 a	 rendszer	 biztosítja,	 hogy	 a	 felhasználói	

	 48.	

kérdések	megválaszolása	több	modell	együttes	eredményére	épüljön,	növelve	a	válaszok	

hitelességét,	miközben	 a	 folyamat	 a	 felhasználó	 számára	 egységes	 élményként	 jelenik	

meg.	

3.2.5.	Backend	architektúra	

A	 backend	 egy	 Python	 nyelven	 írt,	 Flask	 (egy	 Python	 alapú	 web	 keretrendszer)	

keretrendszerben	 futtatott	 program.	 Ez	 a	 szerveroldali	 komponens	 fogadja	 a	 kliens	

(frontend)	 HTTP	 (Hypertext	 Transfer	 Protocol)	 kéréseit,	 hitelesítés	 után	 továbbítja	

azokat	 a	 megfelelő	 AI	 szolgáltatónak,	 majd	 az	 eredményt	 visszaadja	 a	 kliensnek	

válaszként.	 A	 jelenlegi	 implementáció	 több	 különböző	 AI	 szolgáltató	 integrációját	

támogatja	–	beépítésre	került	az	OpenAI	ChatGPT,	az	Anthropic	Claude,	a	DeepSeek	és	a	

Google	Gemini	API	is	–,	és	ezeket	egységes	módon,	egy	köztes	interfészen	keresztül	kezeli.	

A	kliens	számára	így	az	API	használata	egységes	marad	a	választott	modelltől	függetlenül.	

3.2.5.1.	Modulstruktúra	és	adapterek		

A	backend	kód	felépítése	moduláris.	A	fő	futtatható	modul	az	aifusion_backend.py	

(vö.	 2.	 ábra),	 amely	 elindítja	 a	 Flask	 szervert	 (fejlesztés	 közben	 jellemzően	 a	

127.0.0.1:5005	 címen	 fut,	 hogy	 ne	 ütközzön	 más	 webszolgáltatással).	 Az	

aifusion_backend.py	hívási	paraméterei	az	1.	táblázatban,	a	kötelező	HTTP-fejlécmezők	a	

2.	táblázatban	találhatók.	

	

Paraméter	
neve	 Típus	 Alapértelmezett	

érték	 Leírás	

message	 str	 ""	 A	felhasználó	promptja,	vagyis	a	kérdés	/	utasítás,	
amelyet	a	modellnek	küldünk.	

ai_model	 str	 "ChatGPT"	 A	választott	szolgáltató	neve:	ChatGPT,	Claude,	
DeepSeek,	Gemini.	

model	 str	 "gpt-4o"	 A	konkrét	modell	neve	az	adott	szolgáltatón	belül	(pl.	
gpt-4o-mini,	claude-3-sonnet).	

max_tokens	 int	 1024	 A	válaszban	engedélyezett	maximális	
tokenmennyiség.	

temperature	 float	 0.7	 A	kreativitási	szint,	amely	befolyásolja	a	válasz	
változatosságát.	

1.	táblázat:	Az	aifusion_backend.py	bemeneti	paraméterei		
Forrás:	saját	táblázat	

	 49.	

Fejléc	 Példa	érték	 Leírás	

Authorization	 Bearer	79c3914f09c83cccc5b89dffec	
A	biztonsági	token,	amely	igazolja,	
hogy	a	kliens	jogosult	a	kérés	
küldésére.	

Content-Type	 application/json	 A	kérés	formátuma	(mindig	JSON).	
2.	táblázat:	Az	aifusion_backend.py	kötelező	HTTP-fejlécmezői	

Forrás:	saját	táblázat	

A	backend	magját	az	AIInterface	osztály	adja	(definiálva	az	ai_interface.py	fájlban),	

amely	a	különböző	AI	modellek	elérését	 egységesíti.	Az	AIInterface	a	konstruktorában	

példányosítja	a	négy	támogatott	modellkliens	osztályt	(ChatGPTModule,	ClaudeModule,	

DeepSeekModule,	 GeminiModule),	 amennyiben	 rendelkezésre	 állnak	 a	 szükséges	 API	

kulcsaik	az	adott	szolgáltatókhoz.	A	3.	ábra	szemlélteti	az	ai_interface	modul	használatát.	

(.venv) kovacsbalint@MacBookAir aifusion-backend % python aifusion_backend.py
2025-10-20 22:49:16 INFO chatgpt_module [rid=- path=-] ChatGPT client initialized
2025-10-20 22:49:16 INFO claude_module [rid=- path=-] Claude client initialized
2025-10-20 22:49:16 INFO deepseek_module [rid=- path=-] DeepSeek client initialized
2025-10-20 22:49:16 INFO gemini_module [rid=- path=-] Gemini client initialized
2025-10-20 22:49:16 INFO ai_interface [rid=- path=-] AIInterface initialized
 * Serving Flask app 'aifusion_backend'
 * Debug mode: on
2025-10-20 22:49:16 INFO werkzeug [rid=- path=-] WARNING: This is a development server. Do not
use it in a production deployment. Use a production WSGI server instead.
 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:5005
 * Running on http://192.168.1.106:5005
2025-10-20 22:49:16 INFO werkzeug [rid=- path=-] Press CTRL+C to quit
2025-10-20 22:49:16 INFO werkzeug [rid=- path=-] * Restarting with stat
2025-10-20 22:49:16 INFO chatgpt_module [rid=- path=-] ChatGPT client initialized
2025-10-20 22:49:16 INFO claude_module [rid=- path=-] Claude client initialized
2025-10-20 22:49:16 INFO deepseek_module [rid=- path=-] DeepSeek client initialized
2025-10-20 22:49:16 INFO gemini_module [rid=- path=-] Gemini client initialized
2025-10-20 22:49:16 INFO ai_interface [rid=- path=-] AIInterface initialized
2025-10-20 22:49:16 WARNING werkzeug [rid=- path=-] * Debugger is active!
2025-10-20 22:49:16 INFO werkzeug [rid=- path=-] * Debugger PIN: 407-222-044	

from	ai_interface	import	AIInterface	

	

iface	=	AIInterface(

				iChatGptApiKey_str="...",		

				iClaudeApiKey_str="...",		

				iDeepseekApiKey_str="...",		

				iGeminiApiKey_str="..."	

)	

res	=	iface.funGetResponseFromChatGPT_dict("Hello!",	"gpt-4o",	512,	0.7)	

print(res["response_text"])	

	

2.	ábra:	Példa	a	backend	szolgáltatás	indítására	
Forrás:	saját	ábra	

3.	ábra:	Példa	az	ai_interface	importálására	és	futtatására	
Forrás:	saját	ábra	

	 50.	

Minden	egyes	külső	modellhez	tartozik	egy	adapter	modul	(pl.	chatgpt_module.py,	

claude_module.py,	stb.),	amelyek	egy	egységes	metódust	(például	def	getResponse_str())	

valósítanak	meg	a	válasz	lekérdezésére.	Ez	az	adapterréteg	elrejti	a	különböző	API-

hívások	részleteit	-	például	a	ChatGPT,	a	DeepSeek	és	a	Gemini	modulok	az	OpenAI	

Python	SDK-ját	(Software	Development	Kit)	használják	a	hívásokhoz,	míg	a	Claude	

modul	az	Anthropic	Claude	SDK-jával	hívja	az	Anthropic	API-t	-	és	minden	modul	a	

válaszból	egységes,	strukturált	adatot	ad	vissza	(pl.	response_text,	token	statisztikák,	

használt	modell	neve,	befejezés	oka),	hogy	a	felsőbb	rétegek	egységes	formátumban	

dolgozhassák	fel.	Az	AIInterface	így	magas	szintű	interfészt	nyújt	a	backend	többi	része	

számára:	a	komponens	expozíción	keresztül	elérhetők	például	olyan	metódusok,	mint	

getResponseFromChatGPT(),	getResponseFromClaude()	stb.,	amelyek	belsőleg	a	

megfelelő	adapter	objektum	getResponse_str	függvényét	hívják	meg.	Ennek	

köszönhetően	a	Flask	végpontok	kódja	nem	tartalmaz	modell-specifikus	logikát,	csak	

annyit	tesz,	hogy	a	kérést	továbbítja	a	kiválasztott	modell	felé	az	egységes	interfészen	át.	

A	különböző	modellek	eredményei	egységes	formában	jelennek	meg,	mivel	az	adapter	

modulok	standardizáltan	adnak	vissza	minden	fontos	információt	(a	generált	szöveget	

és	metaadatokat,	pl.	token	felhasználás,	modell	neve,	befejezés	oka).	Ez	a	rétegzett	

megoldás	átláthatóvá	teszi	a	kódot	és	megkönnyíti	a	karbantartását.	

3.2.5.2.	API	végpontok	és	hitelesítés	

A	Flask	alapú	webszerver	két	 fő	API	végpontot	kínál	a	kliens	számára.	Az	/api/ai	

végpont	(POST	metódussal)	szolgál	a	tényleges	AI	lekérdezések	kiszolgálására:	ide	küldi	

a	frontend	a	felhasználó	kérdését	és	a	beállított	paramétereket	JSON	formátumban,	pl.	az	

AI	 szolgáltató	 típusát	 (ai_model),	 a	 konkrét	 modell	 nevét	 (model),	 a	 maximálisan	

felhasználható	tokenek	számát	(max_tokens),	a	kreativitási	szintet	(temperature),	stb.	A	

backend	 ezen	 végpontja	 a	 kérés	 feldolgozása	 után	 JSON	 formátumban	 adja	 vissza	 a	

generált	 választ	 és	 a	 kapcsolódó	metaadatokat	 (pl.	 token	 számok,	 válaszidő).	 A	másik	

végpont	a	/api/test	(GET),	amely	egy	egyszerű	egészség-ellenőrző	(health	check)	funkció:	

hitelesítés	után	egy	rövid	üzenetet	ad	vissza	("API	is	working	correctly"),	jelezve,	hogy	a	

szolgáltatás	elérhető	és	megfelelően	működik.	Minden	érzékeny	végpont	–	így	különösen	

az	/api/ai	–	megköveteli	érvényes	Bearer	token	megadását	az	Authorization	fejlécben	a	

hívás	során	(a	prototípusban	egy	globális	statikus	token	használatos	a	védelemhez,	lásd	

Biztonság	alfejezet).	A	végpontok	működésének	 logikája	 röviden	 tehát	a	következő:	az	

	 51.	

/api/ai	 kérés	 beérkezésekor	 a	 backend	 ellenőrzi	 a	 hozzáférési	 tokent,	 majd	 a	 kapott	

paraméterek	 alapján	 kiválasztja,	 melyik	 AI	 modult	 kell	 meghívni.	 Ezt	 az	 AIInterface	

segítségével	 végzi:	 pl.,	 ha	 az	 ai_model	 értéke	 "OpenAI",	 akkor	 a	 kód	 meghívja	 az	

AIInterface.getResponseFromChatGPT()	metódust,	ami	végső	soron	a	ChatGPT	adapter	

modulhoz	irányítja	a	lekérdezést	Hasonlóképpen,	más	érték	esetén	a	megfelelő	modulhoz	

delegálódik	a	kérés	(Anthropic	esetén	Claude,	DeepSeek	esetén	a	saját	modulja,	stb.).	Az	

így	 kapott	 választ	 (valamint	 a	 metaadatokat)	 a	 backend	 visszaadja	 a	 kliensnek	 HTTP	

válaszként.	A	modulok	kapcsolatát	a	4.	ábra	szemlélteti.		

	

2.	ábra:	Az	AiFusion	rendszer	felépítése,	főbb	szerkezeti	elemei	
Forrás:	saját	ábra	

A	Flask	végpont	implementációja	tehát	nem	tartalmazza	a	különböző	szolgáltatók	

sajátos	kezelési	logikáját	–	azt	az	adapter	réteg	végzi	–,	csak	a	kérések	továbbítását	és	az	

eredmények	összegyűjtését,	formázását.	Ennek	köszönhetően	az	API	könnyen	bővíthető	

és	karbantartható,	hiszen	új	modell	integrálásakor	elegendő	egy	új	adapter	modult	írni	és	

az	ai_interface	osztályt	kiegészíteni,	a	meglévő	kódbázis	minimális	módosítása	mellett.	

	 52.	

3.2.6.	Frontend	architektúra	

Az	AiFusion	frontend	egy	egyoldalas	webalkalmazás	(Single	Page	Application)	a	

React	keretrendszer	 felhasználásával,	Vite	build	 rendszerrel.	Az	5.	ábra	szemlélteti	a	

Vite	futtatását.	

A	 kliensoldali	 alkalmazás	 biztosítja	 a	 felhasználói	 felületet	 a	 rendszerhez:	 itt	

történik	 a	 felhasználó	 bejelentkezése,	 a	 lekérdezési	

paraméterek	 megadása,	 a	 kérdések	 elküldése	 a	

backend	felé,	valamint	a	kapott	válaszok	megjelenítése.	

A	 prototípusban	 egy	 egyszerű	 bejelentkezési	

mechanizmus	 működik:	 a	 Login	 oldal	 (Login.jsx)	

ellenőrzi	 a	 felhasználónév/jelszó	 párost	 egy	 beépített	

demó	felhasználó	(admin/admin123)	ellenében	(vö.	6.	

ábra),	 és	 sikeres	 belépés	 esetén	 eltárol	 egy	 loggedIn	

flaget	 a	 böngésző	 Local	 Storage-ében	 (az	 auth.js	

modulban)	a	session	jelzésére.		

	

21:25:50 [vite] (client) hmr update /src/pages/tests/OneLLM.jsx
^C
kovacsbalint@Kovacs-MacBook-Air aifusion-frontend % npm run dev

> aifusion-frontend@0.0.0 dev
> vite

 VITE v7.1.7 ready in 321 ms

 ➜ Local: http://localhost:5173/
 ➜ Network: use --host to expose
 ➜ press h + enter to show help

	

3.	ábra:	Példa	a	frontend	futtatására	
Forrás:	saját	ábra	

4.	ábra:	A	login	modul	
Forrás:	saját	ábra	

	 53.	

Bejelentkezés	után	 a	 főmenü	oldal	 (Menu.jsx)	 jelenik	meg	 (vö.	 7.	 ábra),	 ahonnan	

három	tesztmód	választható:	1	LLM	Test,	3	LLM	

Test	 és	 3	 LLM	 +	 Judge.	 Ezek	 külön	 React	

komponensként	vannak	megvalósítva	–	rendre	a	

OneLLM,	ThreeLLM	és	ThreeLLMJudge	oldalak	–,	

melyek	 a	 menüből	 választva	 dinamikusan	

töltődnek	be.	Mindegyik	teszt	nézet	saját	űrlappal	

és	 vezérlőelemekkel	 rendelkezik	 a	 lekérdezés	

futtatásához.	

	

	

A	 felhasználói	 felület	 (vö.	 8.	 és	 9.	 ábra)	 lehetővé	 teszi	 a	 lekérdezések	

paraméterezését.	 Például	 minden	

tesztoldalon	 található	 egy	 legördülő	

lista,	 amelyből	 kiválasztható	 az	 AI	

szolgáltató	 és	 annak	 konkrét	 modellje	

(ez	 a	 lista	 a	 backend	 által	 támogatott	

modellek	 neveit	 tartalmazza),	 egy	

számbemeneti	 mező	 a	 maximálisan	

felhasználható	 tokenek	 számának	

megadására,	 egy	 szöveges	 mező	 a	

kreativitást	 befolyásoló	 temperature	

érték	 állítására,	 valamint	 opcionális	

jelölőnégyzetek	 a	 válasz	 stílusának	

módosításához	 (pl.	 "Answer	 shortly"	 a	

rövid	 válaszért,	 "Answer	 randomly"	 a	

véletlenszerű	fogalmazásért).		

	

	

5.	ábra:	Egyszerű	menü	
Forrás:	Saját	ábra	

6.	ábra:	Egy	LLM	lekérdezés	
Forrás:	saját	ábra	

	 54.	

Ezen	beállítások	mind	a	felhasználó	kezébe	adják	a	működés	finomhangolását	és	a	

kísérletezést	a	modellekkel.	(A	jelölőnégyzetek	hatása	technikailag	abban	nyilvánul	meg,	

hogy	 a	 frontend	 a	 felhasználó	 kéréséhez	 fűz	 egy	 instrukciót	 a	 kiválasztott	 opcióknak	

megfelelően	 –	 például,	 ha	 be	 van	 pipálva	 a	 "Válaszolj	 röviden"	 opció,	 akkor	 a	 prompt	

elejéhez	hozzáad	egy	utasítást	a	tömör	válaszadásra.	

3.2.6.1.	Kommunikáció	a	backenddel	

	A	frontend	és	a	backend	között	HTTP-alapú	kommunikáció	zajlik,	JSON	formátumú	

adatokkal.	Amikor	a	felhasználó	elindít	egy	lekérdezést	(pl.	rákattint	a	"Küldés"	gombra),	

a	 frontenden	 egy	 JavaScript	 objektum	 áll	 össze	 a	 kérés	 paramétereiből	 –	 tartalmazza	

többek	 között	 az	 ai_model	 (AI	 szolgáltató	 típusa),	 a	model	 (a	 konkrét	modell	 neve),	 a	

message	 (a	 felhasználó	 kérdése),	 a	 max_tokens	 és	 temperature	 értékeket	 stb.	 Ezt	

követően	a	kód	egy	HTTP	hívást	indít	a	backend	felé	a	Fetch	API	segítségével.	A	hívás	a	

helyi	 fejlesztői	 szerveren	 futó	 végpontot	 éri	 el	 (http://127.0.0.1:5005/api/ai),	 és	

tartalmazza	 a	 szükséges	 fejlécet	 is	 az	 autentikációhoz:	 az	 Authorization	 fejlécben	 a	

7.	ábra:	Három	LLM	párhuzamos	lekérdezés	
Forrás:	saját	ábra	

	 55.	

felhasználó	által	megadott	Bearer	tokent.	Az	10.	ábra	szemlélteti	a	frontend	oldali	hívás	

logikáját	JavaScript-ben:	

A	 teljes	 frontend	 forráskód	 listája	 és	 a	 komponensek	 implementációja	 a	

mellékletben	található.	

A	 backend	 JSON	 formátumú	 választ	 küld	 vissza,	 amely	 tartalmazza	 a	 generált	

szöveges	választ	és	kiegészítő	metaadatokat.	A	frontend	JavaScript	kódja	feldolgozza	ezt	

a	JSON	választ:	kiemeli	belőle	a	response_text	mezőt	(és	igény	szerint	egyéb	adatokat,	pl.	

token	statisztikát),	majd	megjeleníti	a	felületen.	A	React	komponensek	állapotkezelését	

(state)	felhasználva	a	kapott	válasz	bekerül	a	komponens	állapotába,	ami	újrarenderelést	

eredményez,	így	a	válasz	szövege	azonnal	látható	lesz	a	felhasználó	számára	egy	<pre>	

vagy	<div>	elemben.	

3.2.6.2.	Párhuzamos	lekérdezések	és	bírói	logika	

A	 3	 LLM	 Test	 nézet	 kódja	 annyiban	 különbözik,	 hogy	 itt	 egyszerre	 három	

lekérdezést	indít	a	frontend	párhuzamosan.	A	program	három	különböző	konfigurációs	

objektumot	 készít	 elő	 (három	 külön	 kiválasztott	 modell	 számára),	 majd	 a	 JavaScript	

Promise.all()	 metódusával	 egyszerre	 küldi	 el	 mindhárom	 fetch	 kérést	 a	 backend	 felé.	

Ezzel	 a	megoldással	 a	 három	 válasz	 nagyjából	 párhuzamosan	 érkezik	meg,	 jelentősen	

const	payload	=	{	ai_model,	model,	message,	max_tokens,	temperature	};	
fetch("http://127.0.0.1:5005/api/ai",		

{	
		method:	"POST",	
		headers:	{	"Authorization":	"Bearer	"	+	token,	"Content-Type":	"application/json"	},	
		body:	JSON.stringify(payload)	
})	
		.then(response	=>	response.json())	
		.then(data	=>	{	
				setOutput(data.response_text);	//	megjelenı́ti	a	kapott	választ	
		});	

	
8.	ábra:	Lekérdezés	küldése	a	backend	/api/ai	végpontra	(egyszerűsített	példa)	

Forrás:	saját	ábra	

	 56.	

csökkentve	a	teljes	válaszidőt	egyenkénti	 lekérdezéshez	képest.	A	3	LLM	+	Judge	nézet	

ennél	 egy	 fokkal	 összetettebb	 folyamatot	 valósít	meg.	 Ebben	 az	 üzemmódban	 először	

hasonló	 módon	 párhuzamosan	 lefut	 három	 slave	 modell	 lekérdezése	 (az	 aktuális	

beállítástól	függően),	majd,	amikor	mindegyik	modellválasz	beérkezett,	a	frontend	egy	új	

üzenetet	állít	össze.	Ez	az	üzenet	 tartalmazza	az	eredeti	 felhasználói	kérdést,	 valamint	

strukturált	formában	a	kapott	modellválaszokat	is	(pl.	felsorolva	vagy	idézve	őket),	és	egy	

második	körben	a	program	ezt	az	új	promptot	küldi	el	egy	kiválasztott	bíró	modellnek	egy	

újabb	 /api/ai	 hívással.	 A	 bíró	 modelltől	 kapott	 választ	 tekintjük	 a	 végső,	 egyesített	

eredménynek,	 amit	 a	 felhasználó	 a	 felületen	 lát.	 Ezt	 a	 több-lépcsős	 folyamatot	 teljes	

egészében	a	 frontend	orchestrálja,	azaz	a	kliensoldali	kód	 felügyeli	a	 folyamat	 lépéseit	

(Promise-ok	és	callbackek	segítségével).	A	backend	számára	mindez	csupán	több	egymást	

követő	 API	 hívás	 sorozata	 –	 először	 a	 párhuzamos	 slave	 lekérdezések,	 majd	 a	 bíró	

lekérdezés	–,	de	a	felhasználó	egyetlen	összefüggő	folyamatnak	érzékeli	a	kérdésére	adott	

kollektív	választ.	

(Megjegyzés:	 A	 prototípus	 jelenlegi	 UI-megvalósítása	 egyszerű,	 de	 működőképes.	 A	

válaszok	 nyers	 szövegként	 jelennek	 meg	 egymás	 alatt.	 A	 rendszer	 azonban	 elő	 van	

készítve	 a	 későbbi	 UI	 fejlesztésekre	 –	 pl.	 a	 kód	 strukturált	 felépítése	 lehetővé	 teszi	 a	

komplexebb	 megjelenítést,	 mint	 táblázatos	 összehasonlítás	 vagy	 eltéréskiemelés	 a	

modellek	válaszai	között.)	

3.2.7.	Batch	Runner	modul	

Az	AiFusion	rendszer	működésének	tesztelését	és	a	válaszok	kiértékelését	nemcsak	

manuális	 próbák	 segítik,	 hanem	 rendelkezésre	 áll	 egy	 Batch	 Runner	 nevű	 eszköz	 is	 a	

tömeges	 automatikus	 futtatáshoz.	 A	 batch-runner	 modul	 (a	 projekt	 batch-runner/	

könyvtárában)	célja,	hogy	nagy	mennyiségű	kérdést	tudjunk	lefuttatni	a	rendszeren	és	az	

eredményeket	rögzíteni	további	elemzéshez.	Például	egy	CSV	vagy	Excel	fájlban	megadott	

kérdéssorozat	 esetén	 a	 Batch	 Runner	 képes	 sorban	 végighívni	 az	 összes	 kérdést	 a	

kiválasztott	modellekkel,	majd	 a	 válaszokat	 automatikusan	 elmenti	 egy	 kimeneti	 JSON	

fájlba.	Ez	az	eszköz	Python	nyelven,	parancssori	szkript(ek)	formájában	valósul	meg,	és	

konfigurálható	paraméterekkel	futtatható.	A	batch_runner.py	szkript	futásakor	egy	futási	

azonosítót	 vagy	 bemeneti	 fájlnevet	 vár	 paraméterként,	 amely	 alapján	 beolvassa	 a	

kérdéseket,	majd	a	futás	során	egy,	az	azonosítóval	és	időbélyeggel	ellátott	JSON	fájlban	

	 57.	

gyűjti	össze	a	kapott	eredményeket.	Így	a	tömeges	tesztek	kimenetei	struktúrált	formában	

menthetők,	 ami	 megkönnyíti	 azok	 elemzését	 és	 összehasonlítását.	 A	 mentett	

eredményfájl	minden	kérdéshez	 tartalmazza	 a	 generált	 választ,	 valamint	 a	 kapcsolódó	

metaadatokat	 (pl.	 tokenfelhasználási	 statisztikák,	 válaszidő,	 a	 használt	 modell	 neve,	

befejezés	oka,	esetleges	hibaüzenet),	lehetővé	téve	a	válaszok	kvantitatív	kiértékelését	és	

a	modellek	összehasonlítását	a	különböző	szempontok	mentén.	

A	batch-runner	modul	bemeneti	paraméterei:	

• --input	(kötelező)	–	Bemeneti	fájl	elérési	útja.	Vesszővel	tagolt	értékek	(Comma-

Separated	Values	–	a	továbbiakban:	CSV)	vagy	Excel:	.csv	/	.xlsx	/	.xls.	

• --token	(kötelező)	–	A	Flask	API-hoz	szükséges	Bearer	token.	

• --api-url	(alapértelmezés:	http://127.0.0.1:5005/api/ai)	–	A	Flask	API	végpontja.	

• --config	(opcionális)	–	JSON	konfigurációs	fájl	útvonala;	ha	nincs	megadva,	a	script	

megpróbálja	a	batch_config.default.json-t	megtalálni	 (script	könyvtár	/	aktuális	

mappa),	ellenkező	esetben	beépített	defaultokat	használ.	

• --mode	(alapértelmezés:	collab)	–	Futási	mód:	collab	(3	válaszadó	LLM	+	1	judge)	

vagy	single	(csak	per-modell	futások).	Más	érték	hibát	dob.	

• 	--method	 (opcionális,	 egész	 szám)	 –	A	 judge	prompt-módszer	 indexe	 (0/1/2).	

Csak	collab	módban	releváns;	tartományon	kívül	hiba.	

• --question-col	(opcionális)	–	A	kérdés	oszlopnév	felülírása	(pl.	question_text).	

• --gt-col	 (opcionális)	 –	 A	 helyes	 válasz	 /	 ground-truth	 oszlopnév	 felülírása	 (pl.	

correct_answer).	

• --options-col	 (opcionális)	 –	 Az	 opciók/alternatívák	 oszlopnév	 felülírása	 (pl.	

options/choices).	

• --qtype-col	(opcionális)	–	A	kérdéstípus	oszlopnév	felülírása	(pl.	question_type).	

• --sheet	(opcionális)	–	Excel	munkalap	indexe	(0,1,…)	vagy	neve	(pl.	Sheet1).	CSV	

esetén	ignorálva	van.	

• --status	 (alapértelmezés:	 normal)	 –	 Konzolos	 kiírás	 szintje:	 quiet	 |	 normal	 |	

verbose.	

• --log-file	(opcionális)	–	Ha	megadjuk,	ide	is	naplóz	(append	módban).	

• --out-dir	(opcionális)	–	Kimeneti	mappa;	ha	nincs	megadva,	az	input	fájl	mappája	

lesz.	A	kimeneti	fájlnév	időbélyegzett	.json.	

	 58.	

• --tag	 (opcionális)	 –	 Opcionális	 címke,	 amely	 bekerül	 a	 kimeneti	 fájlnévbe	 (pl.	

method2).	

A	11.	ábra	egy	kódrészletet	mutat	be	a	batch-runner	folyamatából,	ahol	a	program	

sorra	hajtja	végre	a	kérdéseket	és	gyűjti	az	eredményeket:	

	

9.	ábra:	Kódrészlet:	A	batch_runner	modul	eredménygyűjtő	ciklusa		
Forrás:	saját	ábra	

Összefoglalva,	 jelenleg	 nincs	 egy	 teljesen	 kiépített	 automatikus	 validációs	

keretrendszer	 (pl.	 integrációs	 tesztek	 vagy	 CI/CD	 pipeline)	 a	 projektben,	 de	 a	 Batch	

Runner	 eszköz	 nagy	 segítséget	 nyújt	 a	 válaszok	 mennyiségi	 kiértékelésében	 és	

összehasonlításában.	A	fejlesztők	manuális	teszteket	is	végeznek	a	beépített	UI	nézeteken	

keresztül,	azonban	a	Batch	Runner	által	biztosított	automatikus	tömeges	futtatás	lehetővé	

teszi	a	rendszer	megbízhatóságának	vizsgálatát	jelentősen	nagyobb	kérdésmennyiségen	

is.	 (Megjegyzés:	 A	 projekt	 forráskódja	 verziókövetés	 alatt	 áll	 egy	 privát	 Git	 (elosztott	

verziókezelő	 rendszer)	 repóban,	 de	 a	 commitokhoz	 kapcsolódó	 részletes	 tesztelési	

jegyzetek	vagy	automatizált	futtatások	jelenleg	nem	dokumentáltak.)	

3.2.8.	Nevezéktani	konvenciók	

A	 kódolás	 során	 következetes	 nevezéktani	 konvenciókat	 alkalmaztam	 annak	

érdekében,	hogy	a	forráskód	olvasható,	karbantartható	és	önmagát	dokumentáló	legyen.	

A	 régi,	 VB6-ból	 eredő	 szokásaimból	 eredezik,	 hogy	 a	 kódrészletnek	 önmagában	 is	

	 59.	

értelmezhetőnek	 kell	 lennie,	 tehát	 a	 változó	 és	 függvényneveknek	 szélsőségesen	

beszédesnek	kell	 lenniük,	 a	 kódrészlet	 olvasását	minél	 gördülékenyebbé	 és	 gyorsabbá	

kell	 tenni.	 Ez	 a	hozzáállás	 segíti	 a	nagy	 tömegű	kódok	hatékony	átlátását	 és	bennük	a	

hibakeresést.		

3.2.9.	A	Python	kódban	alkalmazott	nevezéktan	

• A	változónevek	végén	típusjelölő	szuffixumot	használok	(pl.	_str,	_int,	_float,	_bool,	

_list,	_dict,	_val,	stb.),	például	userName_str,	retryCount_int.		

• A	függvények	bemeneti	paraméterei	“i”	előtagot	kapnak,	a	kimeneti	(visszatérő)	

értékek	pedig	“o”	előtagot	(pl.	iUserName_str,	oResponse_str).		

• A	függvénynevek	„fun”	prefixszel	kezdődnek,	utána	CamelCase	alakban	leírom	a	

funkciót,	és	a	végére	kerül	a	visszatérési	érték	típusának	szuffixuma	–	például	

“funBuildPrompt_str”	vagy	“funMergeScores_dict”.		

• A	logikai	(bool)	változók	is/has/should	kezdetű	nevet	kapnak	és	_bool	végződést,	

pl.	“isValid_bool”,	“hasToken_bool”.		

• Az	osztályok	neve	PascalCase	formátumú	(pl.	AiFusionInterface).	A	konstansokat	

nagybetűs	snake_case	szintaxissal	nevezzük	el	(szükség	esetén	

típusszuffixummal),	pl.	DEFAULT_PORT_INT.	A	modulfájlok	neve	kisbetűs	

snake_case	(pl.	logging_setup.py).	

3.2.10.	Biztonság	és	kulcskezelés	

A	rendszer	biztonsági	architektúrájának	központi	eleme	egy	egyszerű	token	alapú	

autentikáció.	 A	 backend	 szerver	 indulásakor	 generál	 egy	 véletlenszerű,	 64	 karakter	

hosszú	hexadecimális	API_SECRET_KEY	tokent,	és	kiírja	ennek	értékét	a	konzolra	(ezt	a	

fejlesztő	kimásolja	és	betölti	a	kliensoldali	alkalmazásba	teszteléskor).	Minden	beérkező	

API	 hívásnál	 a	 szerver	 ellenőrzi	 az	 Authorization	 fejlécet:	 egy	 CheckAuth()	

segédfüggvény	 vizsgálja,	 hogy	 a	 header	Bearer	 token	 formátumú-e,	 és	megegyezik-e	 a	

szerver	által	 ismert	 titkos	kulccsal.	Ha	nem,	a	szerver	HTTP	401	Unauthorized	hibával	

visszautasítja	 a	 kérést,	 meggátolva	 ezzel	 az	 illetéktelen	 hozzáférést.	 Ez	 a	 megoldás	

	 60.	

egyszerű,	de	a	prototípus	számára	elegendő	védelmet	nyújt:	biztosítja,	hogy	csak	az	férjen	

hozzá	a	rendszer	API-jához,	aki	ismeri	a	szerver	által	generált	titkos	kulcsot.	

A	külső	AI	szolgáltatókhoz	tartozó	API	kulcsok	kezelése	szintén	kritikus	biztonsági	

kérdés.	 Jelenleg	 az	 OpenAI,	 Anthropic	 stb.	 API	 kulcsai	 a	 kód	 egy	 konfigurációs	

szakaszában,	 gyakorlatilag	 hardcode-olt	 módon	 vannak	 tárolva	 a	 backendben.	 Ez	

nyilvánvalóan	 nem	 ideális	 megoldás	 biztonsági	 szempontból.	 A	 szakdolgozat	

dokumentációja	 is	 kiemeli,	 hogy	 ezt	 a	 módszert	 csak	 a	 demó	 fázisban	 tartottam	

elfogadhatónak;	 a	 későbbi	 fejlesztések	 során	 át	 kell	 térni	 a	 kulcsok	 biztonságosabb	

kezelésére.	 Ennek	 egyik	 módja	 a	 kulcsok	 egy	 környezeti	 változókat	 tartalmazó	 .env	

fájlban	történő	tárolása,	és	annak	kihagyása	a	forráskódból	(felvétele	a	.gitignore	listába).	

A	projektben	ennek	előkészítése	részben	már	megtörtént:	a	Python	oldalon	fel	van	véve	a	

python-dotenv	csomag	a	függőségek	közé,	és	a	repository	konfigurációban	a	.env	fájl	már	

ignorálva	van.	Általános	elv,	hogy	nyilvános	kódtárházban	soha	nem	szabad	 titkos	API	

kulcsokat	 tárolni	 –a	 jelenlegi	 prototípus	 egy	 privát	 repóban	 készült,	 de	 egy	 éles	

rendszerben	mindenképp	gondoskodni	kell	a	kulcsok	titkos	kezeléséről.	A	kulcskezelési	

architektúra	 része	 az	 is,	 hogy	 a	 frontenden	 egyáltalán	 nem	 tárolunk	 érzékeny	 API	

kulcsokat	–	a	front	csak	egy	hozzáférési	tokent	kezel,	azt	is	a	felhasználó	adja	meg	számára	

indításkor,	és	a	tényleges	titkos	API	kulcsok	csak	a	backend	konfigurációban	léteznek.	

3.2.11.	A	jelenlegi	megoldás	biztonsági	korlátai	

Érdemes	kitérni	néhány	további	biztonsági	megfontolásra.	Jelenleg	minden	szerver-

indításkor	új	token	generálódik,	azonban	ennek	a	tokennek	nincs	lejárati	ideje	vagy	egyéb	

érvényességi	korlátja.	A	jövőben	ajánlott	lehet	időkorlátos	(expire)	tokeneket	bevezetni,	

vagy	 –	 amennyiben	 a	 rendszer	 valódi	 felhasználókezeléssel	 bővül	 –	 felhasználónként	

egyedi	tokeneket	kezelni	a	finomabb	jogosultságkezelés	érdekében.	További	fontos	lépés	

a	 biztonságos	 hipertext	 átviteli	 protokoll	 (Hypertext	 Transfer	 Protocol	 Secure	 –	 a	

továbbiakban:	HTTPS)	használata,	ha	a	rendszert	interneten	keresztül	érjük	el:	jelenleg	

(fejlesztői	környezetben,	 localhoston)	a	 token	nyílt	 szövegként	utazik	a	hálózaton,	ami	

helyben	 nem	 jelent	 veszélyt,	 de	 egy	 éles	 telepítésnél	 TLS	 (Transport	 Layer	 Security)	

titkosítással	kell	védeni	a	kommunikációt,	hogy	a	token	ne	legyen	lehallgatható.	Hosszabb	

távon	felvetődik	egy	korszerűbb	autentikációs	mechanizmus	integrálása	is	–	például	JSON	

web	 tokenek	 (JSON	Web	 Token	 –	 a	 továbbiakban:	 JWT)	 tokenek	 vagy	 OAuth2	 alapú	

	 61.	

bejelentkezés	 –,	 különösen	 akkor,	 ha	 a	 szolgáltatást	 több	 felhasználóval,	 publikus	

formában	tervezem	üzemeltetni.	

3.2.12.	Naplózás	és	adatvédelem		

Az	architektúra	 tervezésekor	szempont	volt,	hogy	érzékeny	adatok	ne	kerüljenek	

naplózásra.	 A	 backend	 naplói	 (logjai)	 jelenleg	 minimális	 információt	 tartalmaznak	 –	

induláskor	 kiírják	 a	 generált	 titkos	 tokent,	 illetve	 a	 Flask	 keretrendszer	 alapvető	

kimenetei	 látszanak.	 A	 kódban	 ugyanakkor	 megvannak	 a	 helyek	 további	 adatok	

naplózására	 (például	 egy	 lekérdezés	 azonosítója,	 feldolgozási	 ideje,	 token	 felhasználás	

mértéke,	 a	 használt	modell	 neve	 stb.),	 de	 fontos,	 hogy	 sem	 a	 felhasználó	 által	 küldött	

üzenet,	sem	az	API	kulcsok	ne	jelenjenek	meg	a	logokban.	Ezt	a	fejlesztés	során	szem	előtt	

tartottam:	 a	 szerver	 oldali	 logolás	 nem	 írja	 ki	 a	 prompt	 szövegét	 vagy	 a	 kulcsokat,	 a	

kliensoldali	 fejlesztői	konzolon	pedig	bár	 látható	a	 fetch	hívások	URL-je	és	headerje,	 a	

token	értékét	a	felület	nem	jeleníti	meg	nyilvánosan	(az	a	böngésző	memóriájában	marad,	

és	a	konzol	amúgy	 is	csak	a	 fejlesztő	számára	érhető	el).	A	 jövőben	érdemes	 lehet	egy	

összetettebb	monitorozó	és	napló-elemző	megoldást	bevezetni	a	rendszerhez	–	például	

audit	logokat,	metrika-gyűjtést	és	riasztásokat	tartalmazó	monitoring	rendszert	–,	hogy	a	

használatot	 és	 esetleges	 rendellenességeket	 nyomon	 lehessen	 követni	 anélkül,	 hogy	 a	

felhasználói	adatok	veszélybe	kerülnének.	

3.2.13.	Jövőbeli	fejlesztési	irányok	

Az	 AiFusion	 platform	 prototípusa	 számos	 továbbfejlesztési	 lehetőséget	 vet	 fel,	

amelyek	a	rendszer	jövőbeni	kibővítését	és	éles	bevetésre	alkalmassá	tételét	célozzák.	Az	

alábbiakban	összefoglalom	a	legfontosabb	lehetséges	fejlesztési	irányokat.	

3.2.13.1.	Működési	logikák	kibővítése		

A	 rendszer	 fejlesztése	 során	 sok,	 előre	nem	 látott	 lehetőség	 felmerült	 a	platform	

hasznosíthatóságával	 kapcsolatban,	 pl.	 a	 platform	 alkalmas	 AI	 ranking	 feladatok	

elvégzésére,	 hibabecslésekre.	 Adott	 tesztsorozat	 könnyen	 lefuttatható	 egy	 újonnan	

kiadott	LLM	esetében	és	a	kapott	végeredmény	gyorsan	illeszthető	kiértékelésre	a	már	

meglévő	 eredmények	 közé.	 A	 több	 LLM	 által	 generált	 válaszokon	módszereit	 bővíteni	

lehetne.	 A	 jelenleg	 TÖBB	 LLM	 +	 JUDGE	 módszer	 mellett	 számos	 dinamikusabb	

	 62.	

együttműködési	 lehetőséget	 lehetne	 implementálni	 (pl.	 a	 LLM-ek	 egymással	 való	

vitatkozása	 megadott	 körön	 keresztül,	 majd	 közös	 álláspont	 kikényszerítése	 és	 az	

esetleges	különvélemény	kezelése).	

3.2.13.2.	Felhasználói	felület	és	UX	fejlesztések	

A	jelenlegi	frontend	funkcionalitása	alapvetően	demonstrációs	célokra	készült,	így	

számos	 lehetőség	 van	 a	 továbbfejlesztésére.	 Javítani	 lehetne	 a	 megjelenést	 és	 a	

használhatóságot:	például	a	generált	válaszok	jelenleg	egyszerűen	egymás	alatt	jelennek	

meg,	 formázás	 nélkül	 –	 a	 jövőben	 érdemesebb	 lenne	 a	 válaszokat	 áttekinthetőbb	

formában	 prezentálni	 (akár	 táblázatosan	 vagy	 külön	 panelekben).	 A	 felületet	

reszponzívvá	 kell	 tenni,	 hogy	 mobil	 eszközökön	 is	 megfelelően	 használható	 legyen.	

Emellett	a	jelenlegi	statikus,	egyfelhasználós	autentikációt	(fix	demó	login)	le	kell	cserélni	

egy	 valódi	 többfelhasználós	 bejelentkezési	 rendszerre.	 Ez	 azt	 jelentené,	 hogy	

regisztrációs	 és	 bejelentkezési	 funkciókat	 kell	 bevezetni,	 felhasználónként	 külön	

azonosítóval	és	jogosultságokkal.	Így	minden	felhasználó	saját	API	tokent	kaphatna,	és	a	

token	kezelését	is	automatizálhatná	a	rendszer	(pl.	bejelentkezéskor	a	szerver	generál	egy	

JWT	tokent,	amit	a	frontend	tárol	és	használ	minden	kéréshez).	Mindezt	természetesen	

biztonságos	 módon,	 HTTPS-en	 keresztül	 érdemes	 megvalósítani,	 hogy	 a	 felhasználói	

adatok	 és	 tokenek	 ne	 kerülhessenek	 illetéktelen	 kézbe.	 A	 jobb	UX	 érdekében	 továbbá	

érdemes	 olyan	 kényelmi	 funkciókat	 is	 bevezetni,	 mint	 a	 lekérdezés	 közbeni	

státuszkijelzés	 (pl.	 "Loading..."	 jelzés,	 amíg	 a	 modellek	 válaszolnak)	 vagy	 a	 korábbi	

kérdések	és	válaszok	megjelenítése	(esetleges	jövőbeni	chat	funkció	alapjaként).	

3.2.13.3.	Infrastruktúra	és	skálázhatóság	

Ahhoz,	hogy	az	AiFusion	a	prototípus	fázisból	produkciós	környezetbe	léphessen,	

néhány	 infrastruktúrális	 fejlesztést	 is	 érdemes	 mérlegelni.	 Az	 alkalmazás	

konténerizálása	 (Docker	 használatával)	 megkönnyítené	 a	 telepítést	 és	 a	

hordozhatóságot,	hiszen	a	teljes	stacket	egy	konténerbe	zárva	egyszerűbben	futtatható	

különböző	 környezetekben.	 A	 skálázhatóság	 érdekében	 szóba	 jöhet	 a	 microservice	

architektúra	irányába	való	elmozdulás	is	–	azaz	a	frontend,	a	backend,	sőt	akár	az	egyes	

adapterek	 vagy	 a	 bírói	 logika	 külön	 szolgáltatásként,	 skálázható	módon	 futtatása.	 Így	

nagyobb	 terhelés	 esetén	 a	 komponensek	 külön-külön	 skálázhatók	 lennének	 (pl.	 több	

párhuzamos	backend	worker	vagy	külön	microservice	a	bírói	döntésekhez).		

	 63.	

3.2.13.4.	Jogi	háttér	szerkezete	

Amennyiben	a	platform	továbbfejlesztésre	kerül,	célszerű	lehet	a	rendszer	logóját	

és	 nevét	 védjegyoltalommal	 ellátni.	 Korábbi	 tapasztalataim	 alapján	 a	 védjegyre	 való	

hivatkozás	megkönnyíti	az	esetleges	jogviták	rendezését,	vagy	pl.	téves	Facebook	tiltások	

kezelését.	Továbbá	a	portfóliók	keveredésének	megakadályozása	érdekében,	a	platform	

kezelésére	 érdemes	 lehet	 önálló	 céget	 bejegyezni	 akár	 Magyarországon,	 akár	

Magyarországon	kívül.	

Fontos	 a	 megfelelő	 felhasználói	 licencek	 és	 szabályzatok	 létrehozása.	

Tanulmányozni	 kell,	 hogy	 a	 platform	 megfelel-e	 a	 hatályos	 jogi	 környezetnek.	 A	

megfelelés	 egyik	 fontos	 eleme,	 annak	 tisztázása,	 hogy	 az	 AiFusion	 platform	

szolgáltatásközvetítőként	van-e	 jelen	a	LLM	szolgáltatók	és	a	 felhasználók,	az	AiFusion	

platformon	 keresztül	 végzett	 interakciójában.	 Véleményem	 szerint	 a	 rendszer	 jogi	

státuszát	illetően	fontos	megjegyezni,	hogy	az	AiFusion	a	jelenlegi	prototípus-terv	alapján	

nem	minősül	 a	 „2001.	 évi	 CVIII.	 törvény	 (Eker.	 tv.)”	 szerinti	 „közvetítő	 szolgáltatónak”	

(Wolters	Kluwer,	2001).	Bár	a	rendszer	végez	adattovábbítást	a	 felhasználó	és	a	külső	

LLM	 szolgáltatók	 (pl.	 OpenAI,	 Google)	 között,	 nem	 passzív	 közvetítőként	 működik.	 A	

platform	aktív,	hozzáadott	értéket	teremtő	funkciót	tölt	be	(pl.	orkesztráció,	bírói	modell	

általi	kiértékelés).	Ezen	felül,	a	tervezett	működési	modellben	a	 felhasználó	a	saját	API	

kulcsait	használja,	így	a	pénzügyi	és	szolgáltatási	jogviszony	közvetlenül	a	felhasználó	és	

a	LLM	szolgáltató	között	jön	létre,	az	AiFusion	platform	pedig	inkább	egy,	a	felhasználó	

által	birtokolt	erőforrásokat	kezelő	intelligens	szoftvereszközként	funkcionál.	

3.2.13.5.	Adatbázis	kapcsolat	

A	 rendszer	 fejlesztésének	 következő	 szakaszában	 adatbázis-kezelő	 rendszer	

bevezetése	 válik	 szükségessé	 az	 adatok	 strukturált,	 biztonságos	 és	 hatékony	 tárolása	

érdekében.	 Az	 adatbázis	 többféle	 információ	 kezelését	 fogja	 ellátni,	 például	 a	 kérdés-

adatbázist	 (feladatok,	 válaszopciók,	 helyes	 megoldások),	 a	 modellválaszok	 és	

eredmények	 tárolását,	 valamint	 a	 tesztfutások	metaadatait	 (időbélyegek,	paraméterek,	

sikerességi	arányok).	A	legvalószínűbb	jelöltek	közé	tartozik	egy	relációs	adatbázis	(pl.	

PostgreSQL	vagy	MySQL),	amely	 jól	 illeszkedik	a	 rendszer	Python	alapú	backendjéhez,	

illetve	megfontolható	egy	NoSQL	(amely	gyakran	a	"Not	only	SQL",	azaz	"nem	csak	SQL"	

rövidítése)	 megoldás	 (pl.	 MongoDB)	 is	 a	 nagyobb	 rugalmasság	 érdekében.	 Jelenleg	

	 64.	

azonban	 a	 rendszer	 még	 a	 finomhangolási	 és	 kísérleti	 szakaszban	 van,	 ezért	 az	

adatrekordok	 viszonylag	 alacsony	 száma	 (néhány	 ezer	 tétel	 nagyságrendjében)	 és	 a	

vizuális	átláthatóság	igénye	miatt	az	adatok	kezelése	Excel-fájlokon	keresztül	történik.	Ez	

a	megoldás	rövid	távon	megkönnyíti	az	adatok	manuális	ellenőrzését	és	korrekcióját,	de	

nem	 jelent	 hosszú	 távú	 megoldást:	 a	 rendszer	 jövőbeli	 bővítése	 és	 a	 tömeges	

adatfeldolgozás	igénye	elkerülhetetlenné	teszi	az	adatbázis-integráció	megvalósítását.	

Összességében	elmondható,	hogy	az	AiFusion	jelenlegi	architektúrája	jól	szemlélteti	

a	 több	 modell	 együttműködésén	 alapuló	 válaszadási	 koncepciót,	 ugyanakkor	 a	 fenti	

fejlesztési	irányok	mentén	továbbhaladva	a	prototípus	egy	ipari	környezetben	is	helytálló,	

kiforrott	rendszerré	fejleszthető.	A	javasolt	bővítések	és	optimalizációk	megvalósításával	

az	AiFusion	platform	a	jövőben	még	hatékonyabban	és	biztonságosabban	szolgálhatná	a	

felhasználókat,	 illetve	 további	 kísérleti	 lehetőségeket	 nyújthat	 a	 kollektív	mesterséges	

intelligencia	területén.	 	

3.3.	Kismintás	tesztelés	

Az	előző	alfejezetekben	bemutatott	architekturális	és	implementációs	megoldások	

gyakorlati	 értékeléséhez	 kismintás	 tesztelést	 végeztem.	 A	 következő	 alfejezetek	 ezt	 a	

tesztkörnyezetet,	a	felhasznált	eszközöket	és	a	vizsgálat	főbb	lépéseit	ismertetik.	

3.3.1.	Áttekintés,	bevezetés	

Az	 AiFusion	 platform	 technikai	működésének	 demonstrálásához/teszteléséhez	

egy	 20	 kérdésből	 álló	 feladatsort	 állítottam	 össze,	 az	 Interneten	 fellelhető	 olyan	

„fejtörőkből”,	 amelyekhez	 ismert	helyes	válasz	 is	 tartozik	 (50.	7	Math	Riddles	Only	 the	

Smartest	Can	Get	Right,	2025),	([51.]	15	Challenging	Logic	Puzzles	and	Their	Answers,	

2025),	([52.]	Difficult	Mathematical	Puzzles	-	5,	2025).	A	feladatsort	22	LLM-nek	adtam	át	

megválaszolásra	(összesen	440	db	lekérdezés).	A	JSON	kimenetek	.xlsx	formátumra	lettek	

konvertálva,	majd	Excelben	kerültek	letárolásra	és	kiértékelésre	(lásd:	1.	sz.	melléklet).	A	

kérdések	és	modellek	listája	szintén	az	1.	sz.	mellékletben	található.	

	 65.	

3.3.2.	A	Batch	Runner	használata	

A	tesztelés	a	rendszer	„Batch	Runner”	moduljának	felhasználásával	történt.	A	Batch	

Runner	 (batch_runner.py)	 képes	 kérdéssorok	 kötegelt	 lekérdezésére.	 A	 program	

bemenete	 rugalmas,	 a	 kérdéseket	 Excel-táblában,	 CSV-ben,	 vagy	 JSON-ban	 is	 képes	

fogadni.	A	teszt	során	a	Batch	Runner	számára	két	bemeneti	fájl	került	átadásra:	

1. A	kérdéseket	tartalmazó	Excel-tábla,	amelynek	az	alábbi	két	oszlopot	

tartalmaznia	kell:	

a. question_type:	a	kérdés	típusa.	Két	féle	lehet:	open_ended	-›	azon	

kérdésekhez,	amelyek	válaszát	szabadon	kell	megfogalmazni.	

multiple_choice	-›	a	feleletválasztós	kérdésekhez.	

b. question_text:	kérdések	szövegtörzse.	

c. (opcionális)	options:	multiple_choice	esetén	a	választható	feleletek	

2. A	kérdések	lekérdezéséhez	szükséges	konfigurációt	tartalmazó	JSON	fájlt.	A	JSON	

fájl	tartalmazza	a	használni	kívánt	nagy	nyelvi	modelleket,	azok	

paraméterezésével	együtt	(vö.	12.	ábra).		

	

A	 Batch	 Runner	 a	 bemeneti	 Excel	 táblában	 található	 összes	 kérdést	 felteszi	 a	

bemeneti	JSON	fájlban	található	összes	nagy	nyelvi	modellnek.	A	tesztben	20	kérdés	kerül	

megválaszolásra	22	LLM	által	(összesen	440	kombináció).	A	tesztelésre	használt	kérdések	

megtalálhatóak	az	1.	sz.	melléklet	„Q&A”	lapján,	a	használt	nagy	nyelvi	modellek	listája	

szintén	 az	 1.	 sz.	melléklet	mellékletben,	 a	 „Models	 and	 pricing”	 oldalon	 találhatóak.	 A	

batch	runner	futtatását	a	13.	ábra	szemlélteti.	

{
 "ai": "Gemini",
 "model": "gemini-2.0-flash-
lite",
 "temperature": 0.0,
 "max_tokens": 20000,
 "answerShortly": false,
 "recursion": false
 }	

10.	ábra:	Részlet	a	bemeneti	JSON	fájl	struktúrájából	
Forrás:	saját	ábra	

	 66.	

kovacsbalint@MacBookAir aifusion-backend % python3 /Users/kovacsbalint/Documents/aifusion-backend/batch-
runner/batch_runner.py \
 --input /Users/kovacsbalint/Documents/aifusion-backend/batch-runner/Kérdéssorok/tmp.xlsx \
 --token 79c3914f09c83cccc5b89dffecf19304d56ed426f7ef024662b61f6291b3c064 \
 --api-url http://127.0.0.1:5005/api/ai \
 --mode single \
 --question-col question_text \
 --gt-col correct_answer \
 --sheet 0 \
 --status verbose \
 --out-dir /Users/kovacsbalint/Documents/aifusion-backend/batch-runner/outputs \
 --tag single_run \
 --config /Users/kovacsbalint/Documents/aifusion-backend/batch-runner/Konfigok/batch_config_1llm_single.json	

11.	ábra:	Példa	Batch	Runner	hívására	
Forrás:	saját	ábra	

		

3.3.3.	A	tesztkérdések	és	azok	lekérdezése		

A	 teszt	 során	a	3	LLM	+	1	 JUDGE	modellt	 vizsgáltam.	A	kollaborációs	partnerek	

megtalálásához	először	ki	kellett	értékelnem	a	modellek	egyéni	teljesítményét,	majd	az	

egyéni	 teljesítményekből	 következtettem	a	modellek	 elméletileg	 lehetséges	 összeadott	

teljesítményére.	 A	 440	 válasz	 helyességét	 az	 ismert	 helyes	 válaszok	 vonatkozásában	

manuálisan,	kézzel	validáltam.	

A	 kiértékelés	 Excel	 táblában	 történt.	 Ehhez	 a	 kimeneti	 JSON	 fájlt	 át	 kellett	

konvertálnom	 xlsx-be,	 amelyhez	 írtam	 egy	 segédprogramot	 (json_to_excel.py).	 A	

segédprogram	használatát	a	14.	ábra	szemlélteti.	

3.3.4.	A	kollaborációs	partnerek	és	a	JUDGE	kiválasztása	

Első	lépésként	az	egy	kollaborációban	résztvevő	partnerek	számát	határoztam	meg.	

A	 lehetséges	 LLM	 párosok	 elméleti	 maximális	 sikerrátáját	 szemléltető	 segédmátrixon	

(17.	 ábra)	 látszik,	 hogy	 már	 két	 kollaboráló	 LLM	 is	 képes	 lehet	 100%-os	 sikerrátát	

nyújtani	a	kérdéskorpuszon,	azonban	jelen	esetben	nem	a	sikerráta	maximalizálása	volt	

12.	ábra:	A	json_to_excel.py	használata		
Forrás:	saját	ábra	

	 67.	

a	 cél,	 hanem	 az	 AiFusion	 rendszer	 tesztelése,	 így	 fokozva	 az	 összetettséget,	 az	 egy	

csoportban	kollaboráló	LLM-ek	számát	önkényesen	háromban	határoztam	meg.	

A	 22	 db	 LLM-ből	 többféleképpen	 ki	 tudunk	 választani	 hármat.	 A	 legegyszerűbb	

módszer	szerint	minden	lehetséges	triádot	megvizsgálunk,	tehát	meg	kell	vizsgálnunk,	a	

22-ből	hányféleképpen	tudunk	kiválasztani	hármat.	A	helyes	számítás	a	

!
22
3
$ = 1540	

tehát	 összesen	 1540	 egyedi	 kombinációja	 létezik	 a	 22	 LLM-nek.	 Ha	 ezt	 az	 1540	

kombinációt	 a	 20	 kérdésre	 vetítve,	 mind	 a	 22	 LLM-et	 JUDGE-ként	 is	 kipróbálva	

szeretnénk	számolni,	az	alábbi	számítást	kapjuk:		

!
22
3
$ × 20 × 22 = 677	600	

Mivel	jelen	esetben	nem	a	teljeskörű	kiértékelés	a	cél,	hanem	a	rendszer	technikai	

működésének	 demonstrálása,	 a	 teszteléshez	 Pareto-szűréssel	 választottam	 ki	 a	

kollaboráló	 triád-csoportokat	 (vö.	 3.3.4.1.	 A	 Pareto-triádok	 kiválasztása),	 valamint	

önkényesen	7	db	LLM-t	választottam	ki	JUDGE	modellként.	A	kiválasztott	JUDGE	modellek	

a	 gpt-4.1-nano,	 a	 gpt-5-nano,	 a	 gemini-2.0-flash-lite,	 a	 gemini-2.5-flash-lite,	 a	 gpt-4.1-

mini,	a	deepseek-chat	és	a	claude-3-5-haiku-20241022.		

3.3.4.1.	A	Pareto-triádok	kiválasztása	

A	 triádok	 kiválasztása	 többcélú	 optimalizálás	 eredménye:	 a	 sikerrátát	

maximalizáljuk,	miközben	a	költséget	és	a	futásidőt	minimalizáljuk.	A	jelölteket	a	„Pareto-

front”	 (Wikipedia,	 [21.]	 Pareto	 front,	 2025),	 vagy	 másképpen	 „Pareto-hatékonyság”	

(Wikipedia,	[18.]	Pareto-hatékonyság,	2025),	alapján	választottam	ki:	 ide	olyan	triádok	

kerülnek,	 amelyeket	 egyetlen	 más	 triád	 sem	 dominál	 a	 (siker,	 költség,	 idő)	 hármas	

dimenzióban.	Ez	a	többcélú	optimalizálási	szemlélet,	amely	a	hatékonyságra	fókuszál,	már	

korábbi	 intézményi	 hallgatói	 munkákban	 is	 megjelent,	 például	 „gyártástervezési	

folyamatok	kapcsán”	 (Kerepesi,	53.	Gyártástervezés	és	termelésirányítás	 folyamatainak	

optimalizálása	az	Országos	Villamostávvezeték	Zrt.-nél,	2013).	Minden	kiválasztott	triád	

ésszerű	 kompromisszum	 a	 célok	 között	 –	 a	 döntéshozó	 preferenciái	 (pl.	

költségérzékenység,	időkorlát)	szerint	a	front	bármely	pontja	indokolható.	

	 68.	

A	22	db	LLM-t	1540	egyedi	kombinációjából	a	kiválasztott	Pareto	triádok	száma:	

11db.	Értelmezés:	egy	triád	nem	dominált,	ha	nincs	másik,	ami	≥	sikert	ad	ÉS	≤	költség	ÉS	

≤	idő	mellett	(legalább	az	egyikben	szigorúan	jobb).	

A	triádok	összevetésénél	a	következő	aggregálási	szabályokat	alkalmaztam:	

- Sikerráta:	 azon	 kérdések	 aránya,	 amelyeknél	 legalább	 egy	 triádtag	 helyeset	

adott	(logikai	OR).	

- Költség:	 kérdésenként	 a	 triádtagok	 költségeinek	 összege,	 majd	 átlag	 a	 teljes	

kérdéskorpuszra.	

- Futásidő:	 párhuzamos	 futtatás	 feltétele	 mellett	 kérdésenként	 a	 triádtagok	

futásidejének	maximuma,	majd	átlag	a	teljes	korpuszra.	

- Lefedettség	 (coverage):	 a	 triád	 által	 ténylegesen	 lefutott	 kérdések	 aránya	 (a	

jelen	mintában	100%).	

- A	triádokat	sikerráta-sávokba	soroltam	(≥95%,	90–95%,	80–90%,	70–80%,	

60–70%,	50–60%).	Minden	sávon	belül	három	„legjobb”	triádot	emelek	ki,	eltérő	

preferenciákra	optimalizálva:	

1. „cheapest”	-	a	legalacsonyabb	költségű	

2. „fastest”	-	a	legalacsonyabb	átlagos	futásidejű	

3. „balanced”	–	a	legjobb	ár/futásidő	arányú	

Fontos	 megjegyezni,	 hogy	 az	 1.	 számú	 melléklet	 elkészültekor	 a	 ChatGPT	 5-ös	

verziója	 a	 temperature	 bementei	 érték	 hiánya	 miatt	 még	 nem	 került	 kizárásra	 a	

kollaborációs	 tesztekből	 (vö.	 Vita	 –	 4.2),	 valamint	 idő	 közben	 kiderült,	 hogy	 a	 külső	

forrásból	 beszerzett	 kérdéssorokhoz	 tartozó	 helyes	 válaszok	 bizonyos	 kérdéseknél	

hibásak,	 vagy	 kétértelműek.	 Mivel	 a	 szakdolgozat	 célja	 a	 kollaborációs	 kutatás	

háttereként	szolgáló	platform	technikai	működésének	bemutatása,	a	hibás	tesztadatok	és	

a	ChatGPT	5	kizárása	 a	 rendszer	 technikai	 értelemben	vett	működésének	bizonyítását	

nem	befolyásolta.	

	 	

	 69.	

3.3.4.2.	Példa	a	Pareto-dominanciára	

Formálisan,	legyen	minden	triádhoz	két	célfüggvény	rendelve:	

𝑓1	:	a	lefedettség	(coverage)	maximalizálandó,	𝑓	

𝑓2:	a	redundancia	(redundancy)	minimalizálandó.	

Ekkor	egy	𝐴	triád	dominál	egy	másik	𝐵	triádot,	ha	az	alábbi	feltételek	teljesülnek:	

A ≺ B	 ⇔	2
𝑓!	(𝐴)³	𝑓!(𝐵),
𝑓"	(𝐴)£𝑓"	(𝐵),

és	legalább	az	egyik	egyenlőtlenség	szigorú.
	

A	Pareto-front	az	összes	olyan	triád	halmaza,	amelyet	egyetlen	másik	triád	sem	dominál:	

𝑃 = {Ai ∣ ∄Aj: Aj ≺ Ai}	

Megjegyzés	 1.:	 a	 triádok	 elemzése	 önmagában	még	 nem	 végeredmény,	mert	 egy	

JUDGE	modell	beépítése	is	szükséges	az	ismeretlen	válaszú	kérdések	megválaszolásához.		

Megjegyzés	2.:	Az	elméleti	100%-os	sikerráta	két	LLM	kombinálásával	is	elérhető	

(Pareto-duók),	azonban	a	teszthez	triádokat	használtam.	

Fontos!	A	tesztelés	közben	kiderült,	hogy	a	bemeneti	kérdésekre	a	megadott	helyes	

válaszok	 között	 szerepelt	 hibás,	 vagy	 kétértelmű	 válasz.	 A	 tévesen	megadott	 „helyes”	

válaszokat	 a	 kollaborációs	 válaszok	 kiértékelése	 során	 a	 rendszer	 jelezte,	 ugyanis	 a	

kérdés-triád-JUDGE	 kimeneten	 rendkívül	 nagy	 szórás	 mutatkozott	 a	 kimeneti	 helyes	

választ	 illetően	azokhoz	a	kérdésekhez	képest,	 amelyek	előre	megadott	helyes	válasza	

nem	volt	hibásan	megadva.	Ezzel	az	AiFusion	rendszer	egy	új	vizsgálati	területre	mutatott	

rá:	 a	 végső	 válaszok	 konzisztenciája	 mintázatot	 és	 irányt	 mutathat	 egy	 ismert	 válasz	

helyességének	 elbírálásában.	 A	 hiba	 rávilágít	 arra	 a	 tényre,	 hogy	 a	 rendszer	 kezdeti	

tesztelése	 és	 finomhangolása	 terjedelmét	 és	 összetettségét	 tekintve	 akár	 egy	 külön	

szakdolgozat	témáját	adhatja,	ezért	a	továbbiakban	a	hibás	adatokkal	dolgozom,	ugyanis	

a	 cél	 a	 rendszer	 használhatóságának	 bemutatása,	 nem	pedig	 kimeneti	 eredményeinek	

értékelése.	

	 70.	

3.3.4.3.	A	Pareto-szűrő	és	annak	használata	

A	Pareto-front	megállapításához	 és	 a	Pareto-triádok	kiválasztásához	 létrehoztam	

egy	Python	kódban	írt	„Pareto-szűrő”	programot	(melléklet:	pareto_select_triads.py).	

A	 Batch	 Runner	 által	 előállított	 futási	 naplókat	 (per	 LLM:	 helyesség,	 token-	 és	

költségadatok,	futásidő)	a	pareto_select_triads.py	dolgozza	fel.	A	bemenet	egy	Excel	fájl	

(pareto_calculator_input.xlsx),	 „runs”	 munkalappal.	 Minden	 sor	 egy	 (kérdés,	 modell)	

kimenetet	reprezentál.	A	pareto_select_triads.py	összeállítja	az	összes	lehetséges	triádot,	

kiszámítja	a	⟨success_rate,	cost_usd,	latency_s,	coverage⟩	mutatókat,	majd	Pareto-szűrést	

végez,	végül	sávonként	kiválasztja	a	cheapest	/	fastest	/	balanced	triádot.	(A	Batch	Runner	

és	az	Excel/JSON	kimenetek	használatát	a	3.3.2.	és	3.3.3.	alfejezetek	mutatják	be.)	

Fő	konfigurációs	mezők	(pareto_config_triads.json):	

- input_xlsx_path_str,	 input_sheet_name_str:	bemeneti	állomány	és	munkalap	

(alapértelmezés:	pareto_calculator_input.xlsx	/	runs).	

- exclude_models_regex_list:	 reguláris	 kifejezések	 listája	 a	 kizárandó	

modellekre	(pl.	["^gpt-5.*"]).	

- bands_list:	sikerráta-sávok	alsó	határai	0-100-ig	(pl.	[95,	90,	80,	70,	60,	50]).	

- min_coverage_float:	minimális	lefedettség	(pl.	1.0).	

- select_roles_list:	mely	kiválasztásokat	kérjük	sávonként	(["cheapest",	"fastest",	

"balanced"]).	

- out_json_bool,	 out_xlsx_bool,	 out_dir_str:	 kimenetformátum(ok)	 és	

célkönyvtár.	

- round_digits_int:	kerekítés	a	riportolt	mezőknél.	

A	 program	 kimenetként	 JSON	 és	 opcionálisan	 Excel	 összegzést	 ad.	 A	 JSON	

struktúrában	 triádonként	 szerepel	 a	 modellek	 listája,	 a	 sáv,	 a	 szerep	

(cheapest/fastest/balanced)	 és	 a	 fő	mutatók.	 Az	 Excel	 kimenet	 a	 kézi	 adatelemzéshez	

kényelmes.		

	 71.	

A	 triádok	 kiválasztása	 reprodukálható.	 A	 futások	 során	 rögzítem	 a	 konfig	 fájlt,	 a	

bemeneti	Excel	verzióját	és	az	időbélyeget,	a	triádok	így	megismételhetően	előállíthatók	

ugyanazon	beállítások	mellett.	

3.3.4.4.	A	Pareto-triádok	felsorolása	

Az	itt	felsorolt	triádok	kiválasztása	a	ChatGPT	5-ös	verzióinak	kizárását	követően	

történt.	Az	1.	számú	mellékletben	a	kizárás	előtti	állapot	látható.	

£95%	sáv:

- Fastest:	 ['DeepSeek	 |	 deepseek-chat',	 'Gemini	 |	 gemini-2.0-flash',	 'Gemini	 |	

gemini-2.5-pro'],	95%,	16,95645s,	0,013973228	USD	

- Cheapest:	['DeepSeek	|	deepseek-chat',	'DeepSeek	|	deepseek-reasoner',	

'Gemini	|	gemini-2.0-flash-lite'],	95%,	80,9133s,	0,000928859	USD	

90%-95%	sáv

- Fastest:	 ['DeepSeek	 |	deepseek-chat',	 'Gemini	 |	gemini-2.0-flash-lite',	 'Gemini	 |	

gemini-2.5-pro'],	90%,	16,95645s,	0,013967823	USD	

- Cheapest:	 ['ChatGPT	 |	 gpt-4.1',	 'DeepSeek	 |	 deepseek-reasoner',	 'Gemini	 |	

gemini-2.0-flash-lite'],	90%,	80,9133s,	0,001299934	USD		

80%-90%	sáv	

- Fastest:	 ['Claude	 |	 claude-sonnet-4-5-20250929',	 'DeepSeek	 |	 deepseek-chat',	

'Gemini	|	gemini-2.0-flash-lite'],	80%,	3,23925	s,	0,00111466	USD	

- Cheapest:	['DeepSeek	|	deepseek-reasoner',	'Gemini	|	gemini-2.0-flash-lite',	

'Gemini	|	gemini-2.5-flash-lite'],	85%,	80,9133s,	0,000913194	

70%-80%	sáv	

- Cheapest:	['DeepSeek	|	deepseek-chat',	'Gemini	|	gemini-2.0-flash-lite',	'Gemini	|	

gemini-2.5-flash-lite'],	70%,	2,0921	s,	0,00006282	USD	

60%-70%	sáv	

- Cheapest:	 ['ChatGPT	 |	 gpt-4.1-nano',	 'Gemini	 |	 gemini-2.0-flash',	 'Gemini	 |	

gemini-2.0-flash-lite'],	60%,	1,1061s,	0,000050625	USD		

50%-60%	sáv	

	 72.	

- Cheapest:	['Gemini	|	gemini-2.0-flash',	'Gemini	|	gemini-2.0-flash-lite',	'Gemini	|	

gemini-2.5-flash-lite'],	55%,	1,06975	s,	0,000048535	USD	

- Fastest:	['ChatGPT	|	gpt-4.1-nano',	'Gemini	|	gemini-2.0-flash',	'Gemini	|	gemini-

2.5-flash-lite'],	55%,	0,9436s,	0,00005465	USD	

- Balanced:	['ChatGPT	|	gpt-4.1-nano',	'Gemini	|	gemini-2.0-flash-lite',	'Gemini	|	

gemini-2.5-flash-lite'],	55%,	1,0465s,	0,000049245	USD	

3.3.5.	A	kimeneti	eredmények	tárolása,	kiértékelése	

A	Batch	Runner	kimeneti	fájljait	először	külön	Excel-fájlokban	kezeltem,	azonban	a	

könnyebb	 átláthatóság	 érdekében	 egy	 nagy,	 az	 aktuális	 tesztelés	 összes	 eredményét	

magában	foglaló,	soklapos	Excel	dokumentum	létrehozása	mellett	döntöttem	(1.	számú	

melléklet).	

3.3.6.	A	teszt	bemenetét	és	részeredményeit	tartalmazó	Excel	

tábla	lapjai	

A	részeredményeket	tartalmazó	Excel-tábla	megtalálható	a	szakdolgozat	1.	számú	

mellékleteként.	

• Summary:	az	eredeti	JSON	kimenet	alapadatait	tartalmazza.	

• Meta:	az	eredeti	JSON	kimenetben	található	futási	környezeti	adatok.	

• Q&A:	a	20	darab	kérdés	és	válasz	páros.	

• Items:	a	20	darab	kérdés	a	Batch	Runner-nek	átadott	formátumban.	

• Models	and	pricing:	a	22	db	LLM	1	000	000	db	és	1	db	input	és	output	tokenre	

vetített	költsége	tételesen	felsorolva.	

o ChatGPT	tokenköltség:	(OpenAI,	2025)	

o Claude	tokenköltség:	(Anthropic,	2025.)	

o Gemini	tokenköltség:	(Google,	2025)	

o DeepSeek	tokenköltség:	(DeepSeek,	2025.)	

	 73.	

14.	ábra:	Az	egyéni	modellek	helyesválasz-mátrixa	
Forrás:	saját	ábra	

13.	ábra:	Az	Efficiency	oldal	fő	táblázata		
Forrás:	saját	ábra	

• Candidates:	az	eredeti	JSON	kimenetben	található	22	db	LLM	20	db	kérdésre	

adott	válasza	(440	sor	+	fejléc)	I/O	tokenszámmal	és	futásidővel.	

• Base	datas:	kézi	feldolgozás	táblázata	a	helyes/helytelen	válaszok	jelzésének	

helye,	és	a	USD-re	vetített,	lekérdezésenkénti	költségek	számolása.	

• Efficiency:	összesítő	táblázat	(vö.15.	ábra)	a	LLM-ek	sikerrátájáról,	költségéről	és	

futásidejéről.	

• Correct	answer	matrix:	vizuális	segédmátrix	(vö.	16.	ábra),	a	modellek	(Y)	

kérdésekre	(X)	adott	helyes	válaszának	mintázatáról.	A	helyes	válaszok	zöld	

színnel,	a	helytelenek	piros	színnel	jelölve.	

	 74.	

15.	ábra:	A	LLM	párosok	elméleti	sikerrátája	vizuálisan	szemléltetve	
Forrás:	saját	ábra	

• Duo	efficiency:	vizuális	segédmátrix	(vö.	17.	ábra),	a	lehetséges	LLM	párosok	

elméleti	maximális	sikerrátájáról,	hőmérséklet	segédvizualizációval.	0%	(sárga)-

100%	(sötétzöld).	

• Pareto	triades:	a	Pareto	triádok	listája	

• JUDGE	models:	a	választott	JUDGE	LLM-ek	listája	

• JUDGE	 inputs:	 az	 összefűzött	 JUDGE	 bemeneti	 promptok	 (220	 darab),	 az	 adott	

triád	maximális	futásidejével	és	összköltségével.	

• Judged	by	GPT	4.1	nano,	Judged	by	GPT	5	nano,	Judged	by	GPT	4.1	mini,	Judged	by	

Gemini	 2.0	 flash	 lite,	 Judged	by	Gemini	 2.5	 flash	 lite,	 Judged	by	Deepseek	Chat,	

Judged	by	Claude	3.5	Haiku:	a	judge	modellek	JSON	kimenetéből	konvertált	Excel	

táblázatok,	 triád+JUDGE	 összesített	 futásidővel,	 összesített	 költséggel,	

sikerrátával,	 triád+JUDGE-onkénti	 bontásban	 (összesen	 84	 triád+JUDGE	 páros,	

1680	db	lekérdezéssel).	

• Final	 conclusion:	a	 triád+JUDGE	eredményeket	és	az	egyéni	LLM	eredményeket	

együttesen	tartalmazó	táblázat.	

	

	 75.	

Az	 Excel	 táblában	 nyomon	 követhetőek	 a	 tesztelés	 részfázisainak	 kimenetei,	 a	

hozzájuk	 tartozó	mátrixokkal,	 és	 a	 végleges	 eredmények	 áttekintésével.	 A	 tesztelést	 a	

rendszer	 sikeresen	 végrehajtotta,	 összesen	 1	680	 db	 automatizált	 lekérdezést	

végrehajtva.	Az	AiFusion	platform	az	aktuális	célkitűzéseket	teljesítette,	fejlesztése	a	

következő	szakaszba	léphet.	

	

	 	

	 76.	

4.	Vita	

A	 kismintás	 tesztelés	 elsődleges	 célja	 az	 AiFusion	 platform	 működésének	

demonstrációja	 volt,	 nem	 pedig	 a	 kollaborációs	 modellek	 abszolút	 teljesítményének	

igazolása.	 A	 tesztelés	 során	 azonban	olyan	 tényezők	merültek	 fel,	 amelyek	 alapvetően	

befolyásolják	az	eredmények	minőségi	kiértékelését.	

4.1.	A	tesztelés	módszertani	korlátai	

A	„4.	 fejezetben”	 leírt	 tesztek	során	a	„bírói”	promptok	összeállítása	még	részben	

manuálisan,	 Excel-táblában	 történt.	 A	 „batch-runner.py”	 modul	 azonban	 már	

automatizáltan	kezelte	ezen	összeállított	promptok	futtatását	a	bírói	körökben.	Ez	a	félig	

automatizált	folyamat	igazolta,	hogy	a	platform	technikailag	képes	a	többlépcsős	(post-

hoc)	konszolidációra,	de	rávilágított,	hogy	a	jövőbeli,	teljes	automatizáláshoz	a	prompt-

generálást	is	a	backendre	kell	helyezni.	

4.2.	A	"GPT-5"	modellek	torzító	hatása	az	

összehasonlíthatóságra	

A	 platform	 fejlesztése	 során	 igyekeztem	 az	 újonnan	 megjelenő	 LLM-eket	

implementálni.	Az	AiFusion-nel	végzett	kismintás	validációs	tesztek	futtatása	előtt	nem	

sokkal	jelentek	meg	a	"GPT-5"	gyűjtőnév	alatt	futó	modellek	(„gpt-5”,	„gpt-5-nano”,	„gpt-

5-mini”)	 amelyek	 a	 vizsgálat	 során	 jelentősen	 torzították	 a	 modellek	

összehasonlíthatóságát.	 Ahogy	 az	 „5.	 Kismintás	 tesztelés”	 során	 empirikusan	

megfigyelhető	volt,	ezen	modellek:	

1.	Jelentősen	hosszabb	futásidővel	dolgoztak;	

2.	Következetesen	pontosabb	válaszokat	adtak	a	többi	vizsgált	modellnél;	

3.	Nem	rendelkeztek	állítható	„temperature”	(kreativitás)	paraméterrel.	

Feltételezhető	(bár	a	dolgozat	keretein	belül	nem	bizonyítható),	hogy	ezen	modellek	

már	 eleve	 egyfajta	 belső,	 többlépcsős	 verifikációs	 logikát	 alkalmaznak,	 ami	

megmagyarázza	a	magasabb	pontosságot	és	a	hosszabb	 futásidőt.	Mivel	 ez	a	működés	

	 77.	

alapvetően	 eltér	 a	 többi,	 paraméterezhető	 modelltől,	 az	 azonos	 feltételek	 melletti	

(költség,	idő,	minőség)	összehasonlítás	okafogyottá	vált.	

4.3.	A	referencia	válaszok	érvényességének	

problémája	

A	 mérést	 torzító	 másik	 kulcstényező	 magából	 a	 tesztadatbázisból	 fakadt.	 Az	

„3.3.4.1.”	 fejezetben	részletezettek	szerint	a	 futtatások	során	kiderült,	hogy	az	„ismert"	

helyes	válaszok	egy	része	hibás	vagy	kétértelmű	volt.	

Ez	 a	 jelenség	 –	 bár	 kezdetben	 a	 platform	 hibájának	 tűnt	 –	 végül	 az	 AiFusion	

koncepciójának	egyik	váratlan	igazolásává	vált.	A	rendszer	éppen	a	kollaboratív	modelljei	

(triád+JUDGE)	 révén	képes	 volt	 kimutatni	 a	 referenciaadatok	 anomáliáit,	 jellemzően	 a	

válaszok	magas	szórásával.	Ez	rávilágított	a	rendszer	egy	lehetséges	jövőbeli	felhasználási	

módjára:	a	platform	nemcsak	LLM-ek,	hanem	maguk	a	 tesztadatbázisok	validálására	 is	

alkalmas	lehet.	

4.4.	A	használhatóság	és	a	működőképesség	értékelése	

A	fenti	két	torzító	tényező	(a	„GPT-5"	modellek	és	a	hibás	tesztadatok)	miatt	a	jelen	

dolgozat	tudatosan	nem	tesz	kísérletet	a	modellek	minőségi	rangsorolására.	

Ami	 viszont	 a	 szakdolgozat	 elsődleges	 célkitűzése	 volt	 és	 egyértelműen	

kiértékelhető:	az	AiFusion	platform	rendszerszintű	működése	igazoltan	stabil.	

• A	rendszer	képes	volt	nagy	tömegű	(összesen	1680+440)	lekérdezést	kezelni	

fagyás	és	adatvesztés	nélkül.	

• Az	 egyedi	 LLM-ek	 API-hibáit	 a	 rendszer	 sikeresen	 kezelte	 („graceful	

fallback")	anélkül,	hogy	a	teljes	batch	futás	leállt	volna.	

• A	naplózás	és	az	eredmények	JSON-kimenete	hibátlanul	működött,	lehetővé	

téve	az	utólagos	kiértékelést.	

• Az	 architektúra	 (backend	 -	 frontend	 -	 batch-runner)	 bizonyította,	 hogy	

alkalmas	 LLM-ranking	 és	 LLM-kollaborációs	 kísérletek	 elvégzésére,	 és	 (az	

	 78.	

adaptereken	 keresztül)	 könnyen	 bővíthető	 új	 modellekkel	 vagy	 új	

kollaborációs	metódusokkal.	

Az	 AiFusion	 platform	 tehát	 teljesítette	 az	 elsődleges	 célkitűzést:	 egy	 stabil,	

skálázható	és	bővíthető	kísérleti	környezetet	biztosít	a	 jövőbeli,	 tisztább	tesztadatokon	

végzett	LLM-kollaborációs	mérésekhez.	

4.5.	Rokonkutatások	és	a	platform	fejlesztésének	

szinergiái	

A	 „4.	 Vita”	 fejezet	 során	 azonosított	 kihívások	 –	 különösen	 a	 megbízhatóság,	 a	

modell-összehasonlítás	 és	 a	 referenciaadatok	 validálásának	 igénye	 –	 nem	 csak	 az	

AiFusion	platform	 sajátjai,	 hanem	a	mesterséges	 intelligencia	 alkalmazott	 kutatásának	

központi	 kérdései.	 A	 szakdolgozatban	 hivatkozott,	 különböző	 szakterületeken	 végzett	

magyar	 kutatások,	 mint	 például	 a	 „tűzvédelmi	 szakértői	 rendszerek	 fejlesztése”	 (Karsa,	

2024)	 vö.	 https://miau.my-x.hu/miau/319/tuzmunkakornyezet/chatgpt_tuz-munka-

kornyezet--vedelmi_vizsga.docx?vagy	a	„jogi	rendszerek	LLM-alapú	tesztelése”	(Pitlik	L.	,	

2025)	rávilágítanak	arra,	hogy	a	domain-specifikus	tudás	és	a	LLM-ek	kapcsolata	kritikus	

fontosságú.	

Ezek	 a	 rokonkutatások	 és	 az	 AiFusion	 platform	 között	 egyértelmű	 kétirányú	

együttműködési	potenciál	rejlik:	

Az	AiFusion	mint	tesztelési	keretrendszer:	Az	olyan	szakterületek	kutatói,	mint	

a	 jog	 vagy	 a	 tűzvédelem,	 gyakran	 egy-egy	 specifikus	 modellt	 (pl.	 COPILOT,	 ChatGPT)	

vizsgálnak.	 Az	 AiFusion	 platform	 hatékony	 és	 tömeges	 tesztelési	 (benchmarking)	

környezetet	biztosíthat	számukra,	lehetővé	téve,	hogy	a	saját	kérdéskorpuszukat	gyorsan	

lefuttassák	 az	 összes	 integrált	 LLM-en	 és	 azok	 kollaborációin.	 Ezzel	 objektív	 választ	

kaphatnak	 arra,	 hogy	 az	 ő	 specifikus	 területükön	 melyik	 modell	 vagy	 modell-

együttműködés	nyújtja	a	legmegbízhatóbb	eredményt.	

A	 rokonkutatások	 mint	 tudásbázisok:	 Az	 AiFusion	 platform	 fejlődéséhez	 –	

különösen	 a	 „JUDGE”	modell	 finomhangolásához	 –	 kritikus	 fontosságú	 a	 jó	minőségű,	

szakterületi	tudásbázisok	(tesztkérdések	és	ismert	helyes	válaszok)	beszerzése.	Az	ilyen	

együttműködések	révén	a	platform	specializált,	validált	adathalmazokhoz	juthat,	amelyek	

elengedhetetlenek	 az	 AiFusion	 domain-specifikus	 ágainak	 (pl.	 egy	 jövőbeli	 "AiFusion-

	 79.	

Legal"	 vagy	 "AiFusion-Engineering"	 modul)	 kifejlesztéséhez	 és	 pontosságának	

növeléséhez.	

Ez	 a	 kooperáció	 tehát	 felgyorsíthatja	 a	 szakterületi	 kutatásokat	 azáltal,	 hogy	 egy	

kész,	automatizált	 tesztelési	platformot	ad	a	kezükbe,	miközben	az	AiFusion	rendszert	

látja	 el	 azokkal	 a	 nélkülözhetetlen	 adatokkal,	 amelyek	 a	 platform	 intelligenciájának	

fejlődését	biztosítják.	

5.	Összegzés,	összefoglalás	

A	 rendszer	 tesztelését	 a	 hibás	 tesztadatok	 által	 okozott	 bonyodalmak	 ellenére	

sikeresnek	tekintem.	Az	AiFusion	platform	képes	stabilan	kezelni	az	egyedi,	frontenden	

végrehajtott	LLM	műveleteket	és	képes	a	kötegelt,	ezres	nagyságrendű	kimenettel	bíró	

lekérdezések	 futtatására	 is.	 Ezzel	 gyakorlatilag	 a	 kezdeti	 célomat	 elértem:	 segítséget	

biztosítani	abban,	hogy	nagy	tömegű	LLM	hívásokat	automatizáltan	hajtsunk	végre,	több	

százezres	vagy	milliós	rekordszámú	adatbázisok	építéséhez,	amelyeket	kutatási	célokra	

lehet	hasznosítani,	mintázataikból	következtetéseket	lehet	levonni.	

A	hibás	tesztadatokat	először	kudarcként	fogtam	fel,	azonban	mivel	utólag	 látom,	

miként	jelezte	a	rendszer	az	anomáliát	(az	inkonzisztens	válaszadással),	tulajdonképpen	

még	 pozitívan	 is	 értékelem	 a	 tesztadatok	 hibáját.	 Ezzel	 a	 rendszer	 hibatűrésének	 és	

hibafelismerésének	egyik	módszere	mutatkozott	meg,	amit	egy	későbbi	továbbfejlesztés	

során	figyelembe	kell	venni.	

A	 rendszer	 üzemeltetését	 és	 fejlesztését	 rövidtávon	 meglévő	 cégeim	

valamelyikében	 kívánom	 folytatni.	 Amennyiben	 a	 fejlesztés	 során	 a	 platform	 olyan	

mérföldkőhöz	 érkezik,	 amely	 után	 a	 portfóliótisztítás	 mellett	 döntenék,	 az	 AiFusion	

rendszer	 üzemeltetésére	 és	 a	 tudásbázis	 licencelésére	 külön	 céget	 jegyeznék	 be.	 A	

cégbejegyzés	során	figyelembe	kell	venni	a	területi	hatályosságot	is,	vagyis	a	régiónként	

eltérő	 szabadalmi	 és	 licencpolitikát.	 Emiatt	 elképzelhető,	 hogy	 külön	 cég	 bejegyzése	

szükséges	az	Európai	Unió	és	az	Amerikai	Egyesült	Államok	területén	is.		

	 	

	 80.	

6.	Jegyzékek,	kiegészítések,	megjegyzések	

A	záró	fejezet	a	dolgozatot	kísérő	háttérelemeket	-	az	irodalomjegyzéket,	az	elemző	

táblázatokat,	az	ábra-	és	táblázatjegyzéket,	a	rövidítések	és	a	fájlmellékletek	jegyzékét	-	

foglalja	 össze	 egységes	 keretben.	 Ezek	 a	 kiegészítések	 biztosítják	 a	 hivatkozások	

átláthatóságát,	 a	 kutatás	 reprodukálhatóságát	 és	 a	 technikai	 megvalósítás	 részletes	

nyomon	követhetőségét.	

6.1.	Irodalomjegyzék	

Schiller,	C.	A.	(2024.	03	13).	[12.]	The	Human	Factor	in	Detecting	Errors	of	Large	

Language	Models:	A	Systematic	Literature	Review	and	Future	Research	Directions.	

Forrás:	arXiv:	https://arxiv.org/abs/2403.09743	

Caliskan,	A.	B.	(2017).	[40.]	Semantics	derived	automatically	from	language	corpora	

contain	human-like	biases.	Science,	356(6334),	183–186.	Forrás:	

https://www.science.org/doi/10.1126/science.aal4230	

Dell’Acqua,	F.,	McFowland	III,	E.,	Mollick,	E.,	Lifshitz-Assaf,	H.,	Kellogg,	K.	C.,	Rajendran,	

S.,	.	.	.	Lakhani,	K.	R.	(2023).	[22.]	Navigating	the	Jagged	Technological	Frontier:	

Field	Experimental	Evidence	of	the	Effects	of	AI	on	Knowledge	Worker	Productivity	

and	Quality.	Forrás:	https://www.hbs.edu/faculty/Pages/item.aspx?num=64700	

Sennrich,	R.,	Haddow,	B.,	&	Birch,	A.	(2016).	[35.]	Neural	Machine	Translation	of	Rare	

Words	with	Subword	Units.	Proceedings	of	the	54th	Annual	Meeting	of	the	

Association	for	Computational	Linguistics	(Volume	1:	Long	Papers)	(old.:	1715–

1725).	Berlin,	Germany:	Association	for	Computational	Linguistics.	Forrás:	

https://aclanthology.org/P16-1162/	aclanthology.org	

DeepSeek.	(2025.).	[48.]	DeepSeek	pricing.	Letöltés	dátuma:	2025.	11	01,	forrás:	

https://api-docs.deepseek.com/quick_start/pricing	

Chen,	Z.,	Li,	J.,	Chen,	P.,	Li,	Z.,	Sun,	K.,	Luo,	Y.,	.	.	.	Yu,	P.	S.	(dátum	nélk.).	[39.]	Harnessing	

Multiple	Large	Language	Models:	A	Survey	on	LLM	Ensemble.	arXiv.	Forrás:	

https://arxiv.org/html/2502.18036v1#:~:text=consider%20that%2C%20for%2

0each%20task,field%20of%20LLM%20Ensemble%20explores	

Shelar,	M.	(2025).	[14.]	Understanding	OpenAi’s	Temperature	Parameter.	Letöltés	

dátuma:	2025.	10	27,	forrás:	DEV	Community:	

	 81.	

https://dev.to/mrunmaylangdb/understanding-openais-temperature-

parameter-2pj6	

Dietterich,	T.	G.	(2000).	[24.]	Ensemble	methods	in	machine	learning.	In	J.	Kittler,	&	F.	(.	

Roli,	Multiple	Classifier	Systems	(old.:	1-15).	Springer.	Forrás:	

https://doi.org/10.1007/3-540-45014-9_1	

Nirdiamant.	(2025.	03	04).	[44.]	LLM	hallucinations	explained.	Forrás:	Medium:	

https://medium.com/@nirdiamant21/llm-hallucinations-explained-

8c76cdd82532	

Google.	(2025).	[47.]	Gemini	Developer	API	Pricing		_		Gemini	API		_		Google	AI	for	

Developers.	Letöltés	dátuma:	2025.	11	01,	forrás:	https://ai.google.dev/gemini-

api/docs/pricing	

Noy,	S.,	&	Zhang,	W.	(2023).	[19.]	Experimental	evidence	on	the	productivity	effects	of	

generative	artificial	intelligence.	Science,	187–192.	Forrás:	Science:	

https://www.science.org/doi/10.1126/science.adh2586?	

Guo,	Y.,	Guo,	M.,	Su,	J.,	Yang,	Z.,	Zhu,	M.,	Li,	H.,	.	.	.	Liu,	S.	S.	(dátum	nélk.).	[41.]	Bias	in	

Large	Language	Models:	Origin,	Evaluation,	and	Mitigation.	arXiv.	Forrás:	

https://arxiv.org/abs/2411.10915	

Turtogtokh,	S.,	Pitlik,	L.,	&	Pitlik,	L.	J.	(2025.).	[13.]	Abstract	–	Objective	evaluation	of	

performances	in	case	of	students	based	on	similarity	analyses	and	Moodle-logs.	

Forrás:	MIAU:	https://miau.my-

x.hu/miau/319/performances/Abstract_Shagai_Turtogtokh.docx	

Surowiecki,	J.	(2004.).	[23.]	The	wisdom	of	crowds:	Why	the	many	are	smarter	than	the	

few	and	how	collective	wisdom	shapes	business,	economies,	societies,	and	nations.	

New	York:	Doubleday.	

Sybrandwildeboer.	(2025.	02	10).	[32.]	How	Large	Language	Models	Predict	the	Next	

Word	(and	Why	That’s	Powerful).	Forrás:	Medium:	

https://medium.com/@sybrandwildeboer/how-large-language-models-predict-

the-next-word-and-why-thats-powerful-b1ac78995e74	

[27.]	Magyar,	uniós	és	nemzetközi	védjegy	díjak.	(2025).	Letöltés	dátuma:	2025.	10	29,	

forrás:	https://keserubarna.hu/vedjegy_arak.html	

[50.]	7	Math	Riddles	Only	the	Smartest	Can	Get	Right.	(2025.	10	25).	Forrás:	

https://www.rd.com/list/math-riddles/	

	 82.	

[51.]	15	Challenging	Logic	Puzzles	and	Their	Answers.	(2025.	10	25).	Forrás:	

https://loquiz.com/2024/11/12/15-challenging-logic-puzzles-and-their-

answers/	

[52.]	Difficult	Mathematical	Puzzles	-	5.	(2025.	10	25).	Forrás:	

https://www.hitbullseye.com/puzzle/hard-math-puzzles.php	

Anthropic.	(2025.).	[46.]	Claude	pricing.	Letöltés	dátuma:	2025.	11	01,	forrás:	

https://docs.claude.com/en/docs/about-claude/pricing	

AAAI.	(2009).	[6.]	AITopics.	Letöltés	dátuma:	2025.	október	26,	forrás:	

https://aitopics.org/	

APA.	(2024.	02).	[28.]	APA	Style	and	Grammar	Guidelines.	Letöltés	dátuma:	2025.	11	01,	

forrás:	https://apastyle.apa.org/style-grammar-guidelines:	

https://apastyle.apa.org/style-grammar-guidelines	

Bang,	Y.,	Cahyawijaya,	S.,	Lee,	N.,	Dai,	W.,	Su,	D.,	Wilie,	B.,	.	.	.	Fung,	P.	(2023).	[26.]	A	

Multitask,	Multilingual,	Multimodal	Evaluation	of	ChatGPT	on	Reasoning,	

Hallucination,	and	Interactivity.	Association	for	Computational	Linguistics	(ACL),	

(old.:	675-718).	Nusa	Dua,	Bali.	Forrás:	https://aclanthology.org/2023.ijcnlp-

main.45/	

Breiman,	L.	(1996).	[4.]	Bagging	predictors.	Machine	Learning,	old.:	123–140.	Forrás:	

https://link.springer.com/article/10.1007/BF00058655.	

Brown,	T.	B.,	Mann,	B.,	Ryder,	N.,	Subbiah,	M.,	Kaplan,	J.,	Dhariwal,	P.,	.	.	.	….	(2020).	[34.]	

Language	models	are	few-shot	learners.	Advances	in	Neural	Information	

Processing	Systems	33	(NeurIPS	2020).	2020:	Curran	Associates,	Inc.	Forrás:	

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac1

42f64a-Paper.pdf	

ELTE	TTK.	(2008).	[11.]	Programtervező	matematikus	szak	–	választható	tárgyak.	

Letöltés	dátuma:	2025.	október	26,	forrás:	

http://formed2008.inf.elte.hu/targyak/	

European	Parliament.	(2025).	[43.]	EU	-	AI	Act.	Letöltés	dátuma:	2025.	11	01,	forrás:	

European	Parliament:	

https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-

act-first-regulation-on-artificial-intelligence	

Fejes,	Z.,	Pitlik,	L.,	Rikk,	J.,	Szűcs,	D.,	&	Túri,	P.	(2024/1-2).	[15.]	E-volution	a	védelem-

egészségügyben.	Honvédorvos,	61-69.	

	 83.	

Holtzman,	A.,	Buys,	J.,	Du,	L.,	Forbes,	M.,	&	Choi,	Y.	(2019).	[37.]	The	Curious	Case	of	

Neural	Text	Degeneration.	arXiv.	Forrás:	https://arxiv.org/abs/1904.09751	

Hugging	Face.	(2025.	10	25).	[36.]	Generation	strategies.	Forrás:	Transformers	

documentation	(Hugging	Face):	

https://huggingface.co/docs/transformers/en/generation_strategies	

Ji,	Z.,	Lee,	N.,	Frieske,	R.,	Yu,	T.,	Su,	D.,	Xu,	Y.,	.	.	.	Fung,	P.	(2023).	[25.]	Survey	of	

Hallucination	in	Natural	Language	Generation.	ACM	Computing	Surveys,	old.:	1-38.	

Forrás:	https://doi.org/10.1145/3571730	

Karsa,	R.	(2024).	[16.]	Tűzvédelmi	szakértői	rendszer	létrehozása	nagy	nyelvi	modellek	

segítségével.	Rendvédelem	Tudományos	Folyóirat.	

Kerepesi,	A.	(2013).	[53.]	Gyártástervezés	és	termelésirányítás	folyamatainak	

optimalizálása	az	Országos	Villamostávvezeték	Zrt.-nél.	Budapest:	Kodolányi	János	

Egyetem	(MIAU	portál).	

Kollár,	Z.	(2011).	[8.]	Intelligens	számítási	módszerek	alkalmazása	logikai	játékokban.	

Forrás:	MIAU:	https://miau.my-x.hu/miau/160/machine_learning.pdf	

Kodolányi	János	Egyetem.	(2021.	03	17).	[7.]	A	KJE	Egységes	Szakdolgozati	Szabályzata.	

Letöltés	dátuma:	2025.	10	31,	forrás:	A	KJE	Egységes	Szakdolgozati	Szabályzata:	

https://www.kodolanyi.hu/konyvtar/images/tartalom/File/kje_egyseges_szakd

olgozati_szabalyzat_2021marc17_hatalyos.pdf	

Kovács,	B.,	&	Pitlik,	L.	(2025).	[2.]	AIFUSION:	A	COLLABORATIVE	AI	TESTING	

PLATFORM	AND	THE	EMERGENCE	OF	AI	SELF-CRITICISM.	In	5th	AHI	EVRAN	

International	Conference	on	Scientific	Research:	Full	Texts	Book	(old.:	444-447).	

Dubai:	IKSAD	Institute.	Forrás:	

https://www.ahievranconference.org/_files/ugd/614b1f_9e6f77dbf53a49dfb07

8554b387d1c9c.pdf	

Kuriakose,	A.	A.	(2024.	05	14).	[42.]	The	Role	of	Human	Oversight	in	LLMOps.	Forrás:	

Algomox	Blog:	

https://www.algomox.com/resources/blog/what_is_the_role_of_human_oversigh

t_in_llmops/	

MTA.	(2025).	[49.]	A	magyar	helyesírás	szabályai,	12.	kiadás.	Letöltés	dátuma:	2025.	11	

02,	forrás:	https://helyesiras.mta.hu/helyesiras/default/akh12	

Magyar	Tudomány.	(2005.	június/6).	[9.]	Megemlékezés.	Dr.	Vajda	Ferenc.	(1934-2004).	

Magyar	Tudomány,	772.	

	 84.	

Microsoft.	(2025..	05.	29.).	[31.]	Understand	tokens.	Letöltés	dátuma:	2025.	10	27,	forrás:	

Microsoft	Learn	(/.NET):	https://learn.microsoft.com/en-

us/dotnet/ai/conceptual/understanding-tokens	

MIAÚ.	(2014).	[10.]	MIAU.	Letöltés	dátuma:	2025.	11	01,	forrás:	https://miau.my-

x.hu/miau2009/index.php3?x=miau128&where[indexkod]=miau03	

MIAÚ.	(2025).	[17.]	MIAU	-	Magyar	Internetes	Agrár/Alkalmazott	Informatikai	Újság.	

Letöltés	dátuma:	2025.	október	26,	forrás:	https://miau.my-

x.hu/miau2009/index.php3	

OpenAI.	(2025).	[45.]	ChatGPT	Pricing.	Letöltés	dátuma:	2025.	11	01,	forrás:	

https://openai.com/api/pricing/	

Pennington,	J.,	Socher,	R.,	&	Manning,	C.	D.	(2014).	[29.]	GloVe:	Global	vectors	for	word	

representation.	(old.:	1532–1543).	Doha,	Qatar:	Association	for	Computational	

Linguistics.	Forrás:	https://doi.org/10.3115/v1/D14-1162	

Pitlik,	L.	(2011).	[5.]	MY-X:	CONT-ROLLING-STONES.	Letöltés	dátuma:	2025.	október	26,	

forrás:	MIAU:	https://miau.my-x.hu/myx-free/	

Pitlik,	L.	(2014).	[1.]	My-X	Team,	an	innovative	idea-breeding	farm.	Innoreg	Regional	

Innovation	Agency	of	Central-Hungary	Khe.	Forrás:	

https://www.researchgate.net/profile/Laszlo-Pitlik	

Pitlik,	L.	(2025).	[20.]	A	kontinentális	jogrendszer	elemi	szintjeinek	tesztelése	COPILOT	

támogatással.	MTA	Gazdálkodástudományi	Bizottság.	Veszprém.	Forrás:	

https://miau.my-x.hu/miau/325/mta_gb_tm_copilot_pitlik.pdf	

Vaswani,	A.,	Shazeer,	N.,	Parmar,	N.,	Uszkoreit,	J.,	Jones,	L.,	Gomez,	A.	N.,	.	.	.	Polosukhin,	I.	

(2017).	[30.]	Attention	Is	All	You	Need.	arXiv.	Forrás:	

https://arxiv.org/abs/1706.03762	

Wikipedia.	(2025.	10	25).	[18.]	Pareto-hatékonyság.	Forrás:	Wikipedia:	

https://hu.wikipedia.org/wiki/Pareto-hat%C3%A9konys%C3%A1g	

Wikipedia.	(2025.	10	25).	[21.]	Pareto	front.	Forrás:	Wikipedia:	

https://en.wikipedia.org/wiki/Pareto_front	

Wolters	Kluwer.	(2001).	[3.]	Net	Jogtár	2001.	évi	CVIII.	törvény.	Letöltés	dátuma:	2025.	

10	30,	forrás:	

https://net.jogtar.hu/jogszabaly?docid=A0100108.TV&searchUrl=/gyorskereso?

keyword%3D2001.%2520%25C3%25A9vi%2520CVIII.%2520t%25C3%25B6rv

%25C3%25A9ny%2520%28Eker.%2520tv.%29	

	 85.	

	

6.2.	A	felhasznált	irodalom	attribútumainak	elemzése	

Ebben	a	fejezetben	a	felhasznált	irodalmak	jellemzői	alapján	végezzük	az	elemzést.	

A	forrásokat	négy	attribútum	(jellemző)	szerint	osztályozzuk,	ahol	minden	attribútum	

két	lehetséges	állapotot	vehet	fel.		

Az	attribútumok	tételes	felsorolása:			

1. KJE	(Kodolányi	János	Egyetem)-Van	/	KJE-Nincs:	azon	felhasznált	

irodalmak,	amelyek	személyi,	vagy	intézményi	értelemben	KJE	

kötődéssel	rendelkeznek,	a	KJE-Van	kategóriába	esnek.	A	KJE	

kötődéssel	nem	rendelkező	források	a	KJE-Nincs	kategóriába	

sorolódnak.	Személyi	kapcsolatnak	veszem	azt,	ha	olyan	illető	szerepel	

a	forrásanyag	szerzői	között,	aki	a	KJE-en	tanult,	vagy	tanított	

bármikor.	Intézményi	kapcsolat	a	KJE-el	a	forrás	kapcsán	igazolhatóan	

kooperáló	intézmény,	vagy	a	KJE	jogelődje.	

2. Új	/	Régi:	A	2014-es	és	korábbi	anyagok	a	Régi	kategóriába,	a	2014	

utáni	források	az	Új	kategóriába	sorolódnak.	

3. Angol	/	Magyar:	A	forrás	eredeti	nyelve	szerinti	besorolás.	

Amennyiben	a	forrás	több	nyelven	is	elérhető,	pl.	a	weboldal	nyelve	a	

böngésző	nyelvének	megfelelően	lehet	angol	vagy	magyar	is,	a	nyelvi	

besorolás	szabadon	választható.	

4. Szakcikk/Weblap:	Szakcikknek	tekintem	az	ISBN	(International	

Standard	Book	Number)	számmal	ellátott	kiadványban	megjelent	

forrásokat,	valamint	a	szerzővel	ellátott,	konferenciaközlönynek	

formailag	megfelelő,	Interneten	elérhető	és	önmagában	letölthető	

anyagokat.	Weboldalnak	az	Interneten	elérhető,	szerzőmegjelöléssel	

ellátott	olyan	oldalakat	tekintem,	amelyek	teljes	megismeréséhez	

elegendő	a	böngészőben	megnyitni	az	adott	weboldalt.	

	 	

	 86.	

A	3.	táblázat	a	felhasznált	irodalmak	„újszerűség	/	KJE-kötődés	/	nyelv	/	minőség”	

szerinti	 besorolását	 mutatja	 be.	 A	 táblázatban	 szereplő	 sorszámok	 és	 a	 hivatkozások	

közötti	kapcsolat	a	6.3.	fejezetben	(„A	3.	sz.	táblázatban	szereplő	sorszámok	hivatkozás-

kapcsolata”)	 található.	 A	 források	 kategóriák	 szerinti	 darabszám-	 és	 százalékos	

megoszlását	a	4.	 táblázat	 szemlélteti.	Az	egyes	kategóriák	 (régi	/	új;	KJE-van	/	KJE-

nincs;	angol	/	magyar;	szakcikk	/	weblap)	átfedéseit	 az	5.	 táblázat	összegzi,	míg	a	6.	

táblázat	 az	 egyes	 attribútumokhoz	 tartozó	összesített	 előfordulásszámokat	mutatja	

be.	A	táblázatokban	alkalmazott	színezés	kizárólag	a	tájékozódást	segíti.	

	
Angol	/		

Szakcikk	

Angol	/		

Weblap	

Magyar	/		

Szakcikk	

Magyar	/		

Weblap	

Régi	/		

KJE-Van	
1.	 5.	 8.,	53.	 10.	

Régi	/		

KJE-Nincs	
4.,	23.,	24.,	29.,	 6.	 9.	 3.,	11.	

Új	/		

KJE-Van	
2.	 13.	 15.,	20.	 7.,	17.	

Új	/		

KJE-Nincs	

12.,	19.,	22.,	25.,	

26.,	30.,	34.,	35.,	

37.,	39.,	40.,	41.	

14.,	21.,	28.,	31.,	

32.,	36.,	42.,	43.,	

44.,	45.,	46.,	47.,	

48.,	50.,	51.,	52.	

16.	 18.,	27.,	49.	

3.	táblázat	-	A	felhasznált	irodalmak	csoportosítása	
Forrás:	saját	táblázat	

	 	

	 87.	

Össz.	darabszám:		

51	
Angol	/	

	Szakcikk	

Angol	/	

	Weblap	

Magyar	/	

	Szakcikk	

Magyar	/	

	Weblap	

Régi	/		

KJE-Van	

1	db	

1,92%	

1	db	

1,92%	

2	db	

3,85%	

1	db	

1,92%	

Régi	/		

KJE-Nincs	

4db	

7,69%	

1	db	

1,92%	

1	db	

1,92%	

2	db	

3,85%	

Új	/		

KJE-Van	

1	db	

1,92%	

1	db	

1,92%	

2	db	

3,85%	

2	db	

3,85%	

Új	/		

KJE-Nincs	

12db	

23,08%	

16db	

30,77%	

1	db	

1,92%	

3db	

5,77%	

4.	táblázat	-	A	felhasznált	irodalmak	darabszám	és	százalék	szerinti	megoszlása	
Forrás:	saját	táblázat	

	 KJE-van	 KJE-nincs	 Régi	 Új	 Angol	 Magyar	 Szakcikk	 Weblap	

KJE-van	 -	 -	 5	 6	 4	 7	 6	 5	

KJE-nincs	 -	 -	 8	 32	 33	 7	 18	 22	

Régi	 5	 8	 -	 -	 7	 6	 8	 5	

Új	 6	 32	 -	 -	 30	 8	 16	 22	

Angol	 4	 33	 7	 30	 -	 -	 18	 19	

Magyar	 7	 7	 6	 8	 -	 -	 6	 8	

Szakcikk	 6	 18	 8	 16	 18	 6	 -	 -	

Weblap	 5	 22	 5	 22	 19	 8	 -	 -	

5.	táblázat	-	A	felhasznált	irodalmak	attribútummátrixa	(db)	
Forrás:	saját	táblázat	

	 	

	 88.	

Felhasznált	irodalmak		
attribútuma	

Darabszám	

KJE-van:		

	

11	db	

KJE-nincs:		

	

40	db	

Új:		

	

39	db	

Régi:		 12	db	

	Angol:		

	

37	db	

Magyar:		

	

14	db	

Weblap:		

	

27	db	

Szakcikk:		

	

25	db	

6.	táblázat	-	Az	egyes	attribútumokhoz	tartozó	összesített	előfordulásszámok	
Forrás:	saját	táblázat	

6.3.	A	3.sz.	táblázatban	szereplő	sorszámok	

hivatkozás-kapcsolata	

A	33.	és	38.	sorszámú	tétel	utólag	törlésre	került,	de	a	sorszám-forrás	kapcsolatok	

szoros	összefüggése	miatt	a	sorszámozást	nem	módosítottam.	

1. (Pitlik	L.	,	[1.]	My-X	Team,	an	innovative	idea-breeding	farm,	2014)	

2. (Kovács	&	Pitlik,	2025)	

3. (Wolters	Kluwer,	2001)	

4. (Breiman,	1996)	

5. (Pitlik	L.	,	[5.]	MY-X:	CONT-ROLLING-STONES,	2011)	

6. (AAAI,	2009)	

7. (Kodolányi	János	Egyetem,	2021)	

8. (Kollár,	2011)	

9. (Magyar	Tudomány,	2005)	

10. (MIAÚ,	2014)	

11. (ELTE	TTK,	2008)	

12. (Schiller,	2024)	

	 89.	

13. (Turtogtokh,	Pitlik,	&	Pitlik,	2025.)	

14. (Shelar	M.	,	2025)	

15. (Fejes,	Pitlik,	Rikk,	Szűcs,	&	Túri,	2024/1-2)	

16. (Karsa,	2024)	

17. (MIAÚ,	2025)	

18. (Wikipedia,	[18.]	Pareto-hatékonyság,	2025)	

19. (Noy	&	Zhang,	2023)	

20. (Pitlik	L.	,	2025)	

21. (Wikipedia,	[21.]	Pareto	front,	2025)	

22. (Dell’Acqua,	és	mtsai.,	2023)	

23. (Surowiecki,	2004.)	

24. (Dietterich	T.	G.,	2000)	

25. (Ji	Z.	,	és	mtsai.,	[25.]	Survey	of	Hallucination	in	Natural	Language	Generation,	

2023)	

26. (Bang,	és	mtsai.,	2023)	

27. ([27.]	Magyar,	uniós	és	nemzetközi	védjegy	díjak,	2025)	

28. (APA,	2024)	

29. (Pennington,	Socher,	&	Manning,	2014)	

30. (Vaswani,	és	mtsai.,	2017)	

31. (Microsoft,	2025.)	

32. (Sybrandwildeboer,	2025)	

33. -	

34. (Brown,	és	mtsai.,	[34.]	Language	models	are	few-shot	learners)	

35. (Sennrich,	Haddow,	&	Birch,	2016)	

36. (Hugging	Face,	2025)	

37. (Holtzman,	Buys,	Du,	Forbes,	&	Choi,	2019)	

38. -	

39. (Chen,	és	mtsai.)	

40. (Caliskan,	2017)	

41. (Guo,	és	mtsai.)	

42. (Kuriakose,	2024)	

43. (European	Parliament,	2025)	

44. (Nirdiamant,	2025)	

	 90.	

45. (OpenAI,	2025)	

46. (Anthropic,	2025.)	

47. (Google,	2025)	

48. (DeepSeek,	2025.)	

49. (MTA,	2025)	

50. ([50.]	7	Math	Riddles	Only	the	Smartest	Can	Get	Right,	2025)	

51. ([51.]	15	Challenging	Logic	Puzzles	and	Their	Answers,	2025)	

52. ([52.]	Difficult	Mathematical	Puzzles	-	5,	2025)	

53. (Kerepesi,	[53.]	Gyártástervezés	és	termelésirányítás	folyamatainak	

optimalizálása	az	Országos	Villamostávvezeték	Zrt.-nél,	2013)	

6.4.	Ábrajegyzék	
1.	ábra:	Az	AiFusion	platform	eredeti	generált	logója	(b)	és	a	módosított,	végső	variáns	

(j)	Forrás:	chatgpt.com	/	saját	szerkesztés	...	45

2.	ábra:	Példa	a	backend	szolgáltatás	indítására	Forrás:	saját	ábra	..	49

3.	ábra:	Példa	az	ai_interface	importálására	és	futtatására	Forrás:	saját	ábra	49

4.	ábra:	Az	AiFusion	rendszer	felépítése,	főbb	szerkezeti	elemei	Forrás:	saját	ábra	51

5.	ábra:	Példa	a	frontend	futtatására	Forrás:	saját	ábra	..	52

6.	ábra:	A	login	modul	Forrás:	saját	ábra	...	52

7.	ábra:	Egyszerű	menü	Forrás:	Saját	ábra	...	53

8.	ábra:	Egy	LLM	lekérdezés	Forrás:	saját	ábra	..	53

9.	ábra:	Három	LLM	párhuzamos	lekérdezés	Forrás:	saját	ábra	...	54

10.	ábra:	Lekérdezés	küldése	a	backend	/api/ai	végpontra	(egyszerűsített	példa)	Forrás:	

saját	ábra	...	55

11.	ábra:	Kódrészlet:	A	batch_runner	modul	eredménygyűjtő	ciklusa	Forrás:	saját	ábra58

12.	ábra:	Részlet	a	bemeneti	JSON	fájl	struktúrájából	Forrás:	saját	ábra	65

13.	ábra:	Példa	Batch	Runner	hívására	Forrás:	saját	ábra	...	66

14.	ábra:	A	json_to_excel.py	használata	Forrás:	saját	ábra	..	66

15.	ábra:	Az	Efficiency	oldal	fő	táblázata	Forrás:	saját	ábra	..	73

16.	ábra:	Az	egyéni	modellek	helyesválasz-mátrixa	Forrás:	saját	ábra	73

17.	ábra:	A	LLM	párosok	elméleti	sikerrátája	vizuálisan	szemléltetve	Forrás:	saját	ábra

	..	74

	 91.	

	

6.5.	Táblázatjegyzék	

	

1.	táblázat:	Az	aifusion_backend.py	bemeneti	paraméterei	..	48

2.	táblázat:	Az	aifusion_backend.py	kötelező	HTTP-fejlécmezői	..	49

3.	táblázat	-	A	felhasznált	irodalmak	csoportosítása	Forrás:	saját	táblázat	86

4.	táblázat	-	A	felhasznált	irodalmak	darabszám	és	százalék	szerinti	megoszlása	Forrás:	

saját	táblázat	..	87

5.	táblázat	-	A	felhasznált	irodalmak	attribútummátrixa	(db)	Forrás:	saját	táblázat	87

6.	táblázat	-	Az	egyes	attribútumokhoz	tartozó	összesített	előfordulásszámok	Forrás:	

saját	táblázat	..	88

	

	 	

	 92.	

6.6.	Rövidítésjegyzék	

1. API	(Application	Programming	Interface)	–	Alkalmazásprogramozási	felület	

2. APA	(American	Psychological	Association)	–	Amerikai	Pszichológiai	Társaság	

3. AWS	(Amazon	Web	Services)	–	Amazon	Web	Szolgáltatások	

4. AAAI	(Association	for	the	Advancement	of	Artificial	Intelligence)	–	Mesterséges	

Intelligencia	Fejlesztéséért	Egyesület	

5. BPE	(Byte-Pair	Encoding)	–	Bájtpár	kódolás	

6. CI/CD	(Continuous	Integration	/	Continuous	Deployment)	–	Folyamatos	integráció	

és	folyamatos	szállítás	(vagy	telepítés)	

7. CPU	(Central	Processing	Unit)	–	központi	feldolgozó	egység	

8. CSV	(Comma-Separated	Values)	–	Vesszővel	tagolt	értékek		

9. EMI	(electromagnetic	interference)	–	elektromágneses	interferencia	

10. EOS	(End	of	Sequence)	–	Szekvencia	vége	

11. Flask	–	Python	web	keretrendszer	

12. Git	–	Elosztott	verziókezelő	rendszer		

13. GPU	(Graphics	Processing	Unit)	–	grafikus	feldolgozó	egység	

14. GUI	(Graphical	User	Interface)	–	Grafikus	felhasználói	felület	

15. HTTP	(Hypertext	Transfer	Protocol)	-	Hipertext	átviteli	protokoll	

16. HTTPS	 (Hypertext	 Transfer	 Protocol	 Secure)	 -	 Biztonságos	 hipertext	 átviteli	

protokoll		

17. HUF	(Hungarian	forint)	–	Magyar	forint		

18. ISBN	(International	Standard	Book	Number)	

19. JSON	(JavaScript	Object	Notation)	–	JavaScript	objektumjelölés	

20. JWT	(JSON	Web	Token)	–	JSON	web	token		

21. KJE	(Kodolányi	János	Egyetem)	

22. LLM	(Large	Language	Model)	–	Nagy	nyelvi	modell		

	 93.	

23. MI	(Mesterséges	Intelligencia)	

24. MIAÚ	(Magyar	Internetes	Agrár/Alkalmazott	Informatikai	Újság)	

25. MVP	(Minimum	Viable	Product)	–	Minimálisan	életképes	termék	

26. NoSQL	(Not	only	SQL)	–	Nem	csak	SQL	(adatbázis	típus)	

27. OS	(Operating	System)	–	Operációs	rendszer	

28. PII	 (Personally	 Identifiable	 Information)	 –	 Személyazonosításra	 alkalmas	

információ	

29. React	–	JavaScript	programkönyvtár	felhasználói	felületek	építéséhez		

30. SDK	(Software	development	kit)	-	szoftverfejlesztő	készlet	

31. SDLC	(Software	Development	Lifecycle)	–	Szoftverfejlesztési	életciklus	

32. SQL	(Structured	Query	Language)	–	Strukturált	lekérdezőnyelv		

33. TEÁOR	-	Tevékenységek	Egységes	Ágazati	Osztályozási	Rendszere	

34. TLS	(Transport	Layer	Security)	–	Szállítási	réteg	biztonsága	

35. USD	(United	States	Dollar)	–	Amerikai	dollár	

36. UX	(User	Experience)	–	Felhasználói	élmény		

37. VM	(virtual	machine)	–	virtuális	gép	

38. VRM	(Voltage	Regulator	Module)	-	feszültségszabályozó	modul	

	 	

	 94.	

6.7.	Fájlmellékletek	jegyzéke	
1. Kismintás	validációs	teszt.xlsx	(473	KB)	

	

	

