
Kodolányi János Egyetem

Szakdolgozat

Kovács János

Üzemmérnök-Informatikus

Alapképzési szak

Budapest

2025

Kodolányi János Egyetem

Informatika Tanszék

Eszközmonitorozó mobilalkalmazás és szerver-oldali rendszer fejlesztése

Konzulens: Dr. Pitlik László

Készítette: Kovács János

Üzemmérnök-Informatikus

Alapképzési szak

Budapest

2025

Tartalomjegyzék

2

1. Bevezetés..6
1.1 Probléma..6
1.2 Célok..7
1.3 Motiváció...8
1.4 Dolgozat felépítése.. 9
1.5 Módszertan.. 10
1.6 Célcsoportok.. 11
1.7 Hasznosság.. 12

2. Szakirodalom feldolgozása.. 14
2.1 A jog szerepe a modern társadalmakban... 15
2.2 Adatbázisok... 16
2.3 Adatszerkezetek és algoritmusok.. 16
2.4 Az elektronika fizikai alapjai...16
2.5 Elektronikus áramkörök.. 16
2.6 Emberi viselkedés és kommunikáció.. 16
2.7 Európai civilizáció és identitás.. 17
2.8 Felhasználói interfészek és vizualizáció..17
2.9 Hálózatok és számítógép architektúrák... 18
2.10 Informatikai védelem és biztonság.. 18
2.11 Komplex társadalomtudományi ismeretek.. 18
2.12 Matematikai alapok... 19
2.13 Operációs rendszerek...19
2.14 Programozás.. 19
2.15 Programozási alapelvek és módszertanok... 19
2.16 Rendszermodellezés.. 20
2.17 Rendszertervezés... 20
2.18 Szoftverarchitektúrák...20
2.19 Szoftvertesztelés.. 21
2.20 Szoftverüzemeltetés...21
2.21 Vállalati gazdaságtan...21
2.22 Vezetési és vállalkozási ismeretek...21
2.23 Innovatív információs és kommunikációs technológiák az IT-biztonság kapcsán..................22
2.24 IT-biztonsági fejlesztések minőség- és projektmenedzsmentje...22
2.25 Mesterséges intelligenciák az IT-biztonság területén.. 22
2.26 Tudásmenedzsment az IT-biztonság területén...22
2.27 Mobil-alkalmazásfejlesztési Metodológiák Fejlődése...23
2.28 Az Eszközmonitorozás és Szülői Felügyelet Története.. 23
2.29 A saját üzemeltetésű és Nyílt Forráskódú Alternatívák Szerepe...24

3. A KidMonitor rendszer megvalósítása...26
3.1 Követelmények meghatározása és elemzése... 26
3.2 Részletes igényfelmérés a valós felhasználókkal.. 26
3.3 Funkcionális és nem-funkcionális követelmények összeállítása...26

3.3.1 Használati esetek meghatározása a backend és a mobil alkalmazás számára..................27
3.3.2 Különböző felhasználói szerepek és jogosultságok meghatározása................................ 27

3

3.4 Kizárások, korlátozások...28
3.5 Alternatív igények felmérése...28
3.6 Rendszer és Architektúra tervezés...30
3.7 Verziókezelés... 30
3.8 Objektum Modell és UML diagramok.. 31
3.9 Adatbázis tervezés... 35

3.9.1 Normalizálás folyamata... 35
3.9.2 SQL tábla szerkezetek..36

3.10 Biztonsági tervezés.. 36
3.11 Backend alkalmazás tervezése Go-ban..36
3.12 Mobilalkalmazás tervezése..37
3.13 Implementáció és fejlesztés... 38

3.13.1 Fejlesztés mérföldkövek.. 38
3.13.2 Backend implementáció...39
3.13.3 Projekt struktúra és szervezés.. 40
3.13.4 Adatbázis réteg implementációja... 40
3.13.5 Ping monitorozó rendszer.. 40
3.13.6 Firebase Cloud Messaging integráció.. 41
3.13.7 Határidő ellenőrző rendszer... 41

3.14 Mobilalkalmazás implementáció...41
3.14.1 Firebase konfiguráció és dinamikus betöltés... 42
3.14.2 Notification handling és channel management.. 42
3.14.3 Felhasználói interfész...42

3.15 Adatbázis implementáció.. 42
3.15.1 Adatmodell implementáció.. 42
3.15.2 Indexelési stratégia...42

3.16 Integráció és összeköttetés...43
3.16.1 API endpoints és kommunikáció... 43
3.16.2 Error handling és resilience..43
3.16.3 Configuration management..43

3.17 Tesztelés és validáció...43
3.17.1 Tesztelési stratégia... 44
3.17.2 Backend Unit Tesztek.. 44
3.17.3 Integrációs Tesztek...45
3.17.4 Rendszertesztek..45
3.17.5 Flutter Mobile App Tesztek... 46
3.17.6 Teljesítmény és biztonsági tesztek... 46

3.18 Telepítés és üzembe helyezés.. 47
3.18.1 Platformfüggetlen környezet előállítása...47
3.18.2 Éles környezet kialakítása..47
3.18.3 Deployment folyamat...48
3.18.4 Monitoring és karbantartás...48

3.19 Eredmények és értékelés... 49
3.19.1 Adatgyűjtés és elemzés.. 49

4

3.19.2 Információs többletérték elemzés.. 50
3.19.3 Minőségbiztosítás és ellenőrzés... 51
3.19.4 Kockázatelemzés..52
3.19.5 GDPR megfelelőség...53

4. Vita... 55
5. Következtetések... 57
6. Összefoglalás..59

6.1 Eredmények összegzése.. 59
6.2 Célok teljesülése.. 60
6.3 Tanulságok és tapasztalatok...61
6.4 Jövőbeli fejlesztési lehetőségek...62
6.5 Executive Summary...64

7. Mellékletek...66
7.1 Irodalomjegyzék..66
7.2 Rövidítések jegyzéke.. 69
7.3 Ábrák jegyzéke... 72
7.4 Táblázatok jegyzéke..73
7.5 Definíciók jegyzéke.. 74
7.6 Forráskód részletek... 79
7.7 KidMonitor v1.0 - Felhasználói Dokumentáció... 106
7.8 LLM-konverziók részletei...114

5

1. Bevezetés

A digitális eszközök mindennapi életünk elválaszthatatlan részévé váltak, különösen a
fiatalabb generációk körében. Míg ezek a technológiák számos előnyt kínálnak az oktatás,
kommunikáció és szórakozás terén, a túlzott használatuk negatív hatással lehet a gyermekek
fizikai és mentális egészségére, valamint a családi kapcsolatokra.

A jelen szakdolgozat egy teljes körű szoftverfejlesztési projekt dokumentációja,
amely a követelmény-elemzéstől a telepítésig végigköveti egy valós problémára adott
informatikai megoldás megszületését. A munka célja kettős: egyrészt bemutatni egy
működőképes, gyakorlati értékkel bíró rendszer megvalósítását, másrészt demonstrálni az
üzemmérnök-informatikus alapképzés során elsajátított kompetenciák integrált alkalmazását
egy komplex fejlesztési projektben.

A dolgozat fókuszában egy olyan eszközmonitorozó rendszer áll, amely backend,
mobilalkalmazás és adatbázis-kezelés komponenseket integrál egyetlen koherens
architektúrába. A témaválasztás tudatos döntés eredménye: olyan alkalmazási terület, amely
egyesíti a hálózati programozást, a modern mobilfejlesztési paradigmákat, a valós idejű
értesítési rendszereket és a családi környezetben felmerülő adatvédelmi kihívásokat.

1.1 Probléma

A szülők számára kihívást jelent a gyermekek képernyő előtt töltött idejének

megfelelő korlátozása, egyáltalán annak mérése. A dolgozatomban a mobiltelefon és asztali

számítógép használat felügyeletének témakörét járom körbe.

A probléma különösen akut a mobiltelefon platformokon, ahol a technológiai fejlődés

új kihívások (pl. a túlzott képernyőidő kezelése, az alkalmazásfüggőség kialakulása vagy a

nem megfelelő tartalmakhoz való egyszerű hozzáférés) elé állítja a családokat. Ahogy egy

magyar szakirodalom megfogalmazta: "Az Android szülői felügyeletére nagy szükség van,

amikor korlátozni kell a gyermekek által a képernyőn töltött idő korlátozását. A gyermekek

mindig éretlen szem előtt tartva, így néha nem tudják ellenőrizni viselkedésüket" (Aiseesoft,

2017). Ez a 2017-es megfigyelés különösen releváns, mivel már akkor felismerte a szülői

felügyelet technikai megvalósításának kihívásait, amelyek azóta tovább fokozódtak a

mobileszközök növekvő elterjedésével.

A problémakör komplexitását jelzi, hogy bár számos (pl. Qustodio, Google Family

Link vagy az Apple ScreenTime) kereskedelmi megoldás létezik, ezek gyakran költségesek,

korlátozott testre szabhatóságot kínálnak, vagy nem felelnek meg a magyar családok

6

specifikus igényeinek (pl. zárt ökoszisztémát alkotnak, amelyek adatvédelmi aggályokat

vetnek fel, vagy nem teszik lehetővé a mély, hálózati szintű szabályozást). Ennek

következtében szükség van olyan (nyílt forráskódú) alternatívákra, amelyek rugalmasabban

adaptálhatók a különböző családi környezetekhez, így lehetővé teszik az adatok otthoni

tárolását, egyedi, szkriptelt szabályok hozzáadását, vagy a rendszer integrálását már meglévő

otthoni szerver-infrastruktúrába.

A nyílt forráskódú megoldások fejlődése terén már vannak pozitív példák. A DEV

Community (2024) által dokumentált KidShield projekt alapján: "KidShield is a lightweight

but powerful parental control solution for Android devices. It's fully open-source and

designed to help parents keep their kids safe in the digital world — without compromising

performance or battery life." Ez a nyílt forráskódú fejlesztői közösség által készített,

gyakorlati megvalósítást bemutató projekt alátámasztja, hogy technikailag megvalósítható

alacsony késleltetésű, valós idejű értesítések küldésére képes, erőforrás-kímélő (alacsony

szerver-oldali memória- és CPU-használat, valamint minimális kliens-oldali

akkumulátor-fogyasztás) szülői felügyeleti rendszerek készítése nyílt forráskódú alapokon.

1.2 Célok

A szakdolgozat fő célja egy otthoni-családi környezetben (ld. 1.6 Célcsoportok és

3.18 Telepítés) használható, digitális eszközök használati idejét ellenőrző szoftver rendszer

fejlesztése (ld. 3. Saját fejlesztés), amely ingyenes push értesítések (ld. 3.13.7 Határidő

ellenőrző rendszer) segítségével támogatja (ld. 1.7 Hasznosság és 7. Mellékletek -

Felhasználói Dokumentáció) a szülőket gyermekeik tudatos (ld. 1.3 Motiváció)

eszközhasználatának kialakításában.

Kiemelt cél a költséghatékony (ld. 1.3 Motiváció és 2.4 nyílt forráskódú (FOSS)

Alternatívák) alternatíva biztosítása a kereskedelmi eszközmonitorozó szoftverekkel (pl.

Qustodio, Google Family Link, Circle Home Plus) szemben, egy nyílt forráskódú (ld. 2.4

FOSS Alternatívák) és a jövőben továbbfejleszthető (ld. 6.3 Jövőbeli fejlesztési lehetőségek)

rendszer formájában.

A célok teljesülésének értékelése a 3.19 Eredmények és értékelés és a 6.2 Célok teljesülése

fejezetekben történik meg. A projekt sikerességét a következő, előre definiált kritériumok

alapján értékelem:

7

●​ Rendszer stabilitása: Eléri a minimum 99%-ot.

○​ (A 100%-os érték a teljes 30 napos tesztidőszak, azaz 720 óra teljes

üzemidejét jelenti, amely alatt a szerver-alkalmazás hiba nélkül fut és válaszol

a kérésekre.)

●​ Push értesítések kézbesítési aránya: Eléri a minimum 95%-ot.

○​ (A 100%-os érték a szerver által a tesztidőszak alatt igazoltan elküldött összes,

az FCM felé továbbított riasztási eseményt jelenti.)

●​ Adatbázis válaszideje: Átlagosan 100ms alatt marad a 3.17.4 Teljesítménytesztek

során.

●​ Mobilalkalmazás energiafogyasztása: Maximum 5% az akkumulátor napi

használatából (a 3.17.5 Erőforrás-használat tesztelése alapján).

●​ Valós környezetben minimum 30 napos sikeres tesztelési időszak (részletesen ld. 3.19

Eredmények és értékelés).

A célok teljesülésének aggregált értékelése a 6.2 Célok teljesülése fejezetben történik

meg, ahol részletesen elemzem az elért eredményeket és a kitűzött célok megvalósulását, míg

a fentebb megadott alfejezeti utalások a konkrét célrétegekről szóló dolgozatrészeket emelik

ki az Olvasó számára.

1.3 Motiváció

A témaválasztást elsősorban az motiválta, hogy meglévő, valid igényt elégítsen ki a

fejlesztés. A szülők számára gyakran jelent kihívást a gyermekek képernyő előtt töltött

idejének megfelelő korlátozása és annak objektív mérése.

Személyes motivációm: Saját tinédzser gyermekeim által közvetlenül is érintve vagyok és a

kereskedelmi megoldások magas költsége és korlátozott testre szabhatósága erős ösztönzést

jelentett egy saját rendszer kifejlesztésére.

Szakmai motiváció: A projekt lehetőséget biztosít a tanulmányok során megszerzett összes

kompetencia gyakorlati alkalmazására egy komplex, valós problémát megoldó rendszer

keretében. A Go programozási nyelv és a Flutter framework alkalmazása modern

technológiai stack használata bemutatja a fejlesztési szakértelmet több platformon is. A teljes

szoftverfejlesztési életciklus végig járása - a követelményektől a telepítésig - átfogó

projektmenedzsment tapasztalatot biztosít, amely kiegészíti az elméleti tudást gyakorlati

készségekkel.

8

Társadalmi relevancia: A digitális jólét (digital wellbeing) kérdése különösen fontos a

fiatalabb generációk körében. A projekt hozzájárul a tudatos technológia használat

kultúrájának kialakításához családi szinten, támogatva a szülőket gyermekeik egészséges

digitális szokásainak formálásában.

Ez a társadalmi igény tudományos kutatásokkal is alátámasztott. A legfrissebb

nemzetközi vizsgálatok megerősítik a szülői monitorozás jelentőségét: "Parental monitoring

and limiting of screen time are associated with less problematic screen use. Although the

American Academy of Pediatrics provides guidance for screen use for children 5–18 years,

there is a paucity of evidence-based guidance for media parenting practices" (Nagata et al.,

2025). Ez a 2025-ös kutatás nemcsak bizonyítja a szülői monitorozás hatékonyságát, hanem

rámutat arra is, hogy hiány van az evidence-based útmutatókból a szülői média-gyakorlatok

terén.

A KidMonitor projekt éppen ezt az űrt igyekszik betölteni azzal, hogy egy

tudományos alapokon nyugvó, objektív mérésekre támaszkodó rendszert nyújt a családok

számára, amely támogatja a szülőket az egészséges digitális szokások kialakításában és

fenntartásában.

1.4 Dolgozat felépítése

A szakdolgozat felépítése a probléma megértésétől a kész rendszer átadásáig tartó
logikai ívet követi. A dolgozat a számozatlan Bevezetést követően hat fő fejezetből, valamint
a mellékletekből áll.

A második fejezet a szakirodalmi áttekintés, amely bemutatja a projekt elméleti
hátterét, a kapcsolódó technológiákat és a fejlesztéshez szükséges tantárgyi ismereteket.

A dolgozat magját és legterjedelmesebb részét a harmadik fejezet, a „A KidMonitor
rendszer megvalósítása” adja. Ez a fejezet egy teljes szoftverfejlesztési életciklust mutat be,
logikusan felépített alfejezetekre bontva. A fejezet a 3.2 Követelmények meghatározásával
indul, amely lefekteti a rendszerrel szembeni elvárásokat. Fontos alfejezet a 3.4 Kizárások,
korlátozások, amely pontosan definiálja, hogy mi az, ami terjedelmi vagy fókuszbeli okokból
nem képezi a jelenlegi munka részét. Ezt követi a 3.6 Rendszertervezés, a 3.13
Implementáció és fejlesztés, valamint a 3.17 Tesztelés és validáció folyamata. A fejezet a
3.18 Telepítés és üzembe helyezés lépéseivel és a 3.19 Eredmények és értékelés című
alfejezettel zárul.

9

A negyedik fejezet (Vita) és az ötödik fejezet (Következtetések) a fejlesztés eredményeit
helyezi tágabb kontextusba, kitérve a felmerült kihívásokra és a jövőbeli fejlesztési
lehetőségekre.

A hatodik fejezet az Összefoglalás (valamint annak angol nyelvű megfelelője), míg a hetedik
fejezet a Mellékleteket tartalmazza, beleértve a rövidítések listáját, a Felhasználói
Dokumentációt és az LLM-konverziók részletezését.

1.5 Módszertan

A szakdolgozat elkészítése során alkalmazott módszertan három fő pillérre épül:

szakirodalmi kutatás, szoftverfejlesztési metodológia és validálási stratégia. “A

szoftverfejlesztés inherensen komplex tevékenység, amely folyamatos alkalmazkodást igényel.

A Scrum keretrendszer nem írja elő minden szituációban a konkrét teendőket, mivel lehetetlen

előre megjósolni minden eseményt komplex munkák esetében. Ehelyett egy keretrendszert és

gyakorlatokat kínál, amelyek mindent láthatóvá tesznek, lehetővé téve a fejlesztők számára,

hogy helyszíni korrekciókkal tartsák a projektet a kívánt célok irányában.” (Schwaber, 2004,

7. o.). Ez a filozófia jól illeszkedik a dolgozatban alkalmazott hibrid megközelítéshez, amely

a vízesés modell strukturált fázisait kombinálja az agile iteratív elemekkel.

Szakirodalmi kutatás

A szakirodalom feldolgozása során strukturált megközelítést alkalmaztam, amely

magában foglalja minden tanult tantárgy szakdolgozathoz való kapcsolódásának

dokumentálását konkrét példákkal. A források kiválasztása során figyelembe vettem az

egyetem speciális követelményeit: magyar és angol nyelvű források, 2020 előtti és utáni

publikációk, valamint KJE kötődésű anyagok bevonása.

Fejlesztési metodológia

A szoftver rendszer fejlesztése hibrid megközelítést követ, amely a vízesés modell

strukturált fázisait kombinálja agile elemekkel.

A fejlesztési folyamat fő szakaszai:

Követelményelemzés és tervezés (vízesés modell)

●​ Iteratív implementáció sprint-szerű mérföldkövekben

●​ Folyamatos tesztelés és integráció

10

https://www.amazon.com/Agile-Software-Development-Scrum/dp/0130676349

Alkalmazott eszközök és technológiák:

Kategória Technológia / Eszköz Szerepe a projektben

Backend Fejlesztés Go

A szerver-oldali logika, az eszköz-pingelő szolgáltatás
és az API-végpontok megvalósítása. Választásának
indoka a magas teljesítmény és az egyszerű
telepíthetőség (statikus bináris).

Adatbázis-kezelés SQLite3

A "self-hosted" célkitűzés támogatása. Az eszközök,
szabályok és felhasználók tárolása egy könnyen
hordozható, konfigurációt nem igénylő fájl-alapú
adatbázisban.

Mobilalkalmazás Flutter

A szülői, cross-platform mobilalkalmazás fejlesztése,
amely fogadja az értesítéseket. Választásának indoka a
gyors fejlesztési ciklus és a jövőbeli iOS bővíthetőség.

Értesítési Rendszer Firebase Cloud Messaging
Azonnali, ingyenes és megbízható push értesítések
kézbesítése a szerverről a szülői mobilalkalmazásra.

Verziókezelés Git
A forráskód verziókövetése, a fejlesztési ágak kezelése
és a kooperáció lehetővé tétele.

Tervezés és Dokumentáció UML diagramok

A rendszertervezés vizuális modellezése (pl.
Szekvencia- és Komponens diagramok) és a műszaki
specifikációk rögzítése.

Táblázat 1. Alkalmazott technológiák - Forrás: saját táblázat

Tesztelési és validálási stratégia

A rendszer minőségbiztosítása többszintű megközelítést alkalmaz:

●​ Unit tesztek kritikus funkciókhoz

●​ Integrációs tesztek komponensek együttműködésének ellenőrzésére

●​ Teljesítmény és biztonsági tesztek a rendszer stabilitásának biztosítására

A validálás során GDPR megfelelőséget és az egyetem szakdolgozati követelményeinek

teljesítését is ellenőrzöm.

1.6 Célcsoportok

A KidMonitor alkalmazás elsődleges célcsoportját azok a szülők és gondviselők
alkotják, akik szeretnék aktívan felügyelni gyermekeik digitális eszközhasználati szokásait.
Ebbe a csoportba tartoznak mindazok, akik aggódnak a túlzott képernyőidő, az online
veszélyek (például nem megfelelő tartalmak vagy online zaklatás) és az alkalmazásfüggőség
miatt. A célcsoport másodlagos részét képezik azok a technikailag tudatos, de nem feltétlenül
informatikai szakértő kisgyermekes családok is, akik már a kezdetektől szeretnének
egészséges digitális kereteket kialakítani, és ehhez adatvezérelt támogatásra van szükségük.

11

1.7 Hasznosság

A szakdolgozatban bemutatott rendszer hasznossága több szinten is megmutatkozik.
A szülők számára a legfőbb értéket az az információs többletérték jelenti, amelyet a
gyermekük eszközhasználatáról kapnak. A rendszer által gyűjtött adatok (pl.
alkalmazáshasználati idők, aktivitási mintázatok) konkrét, tényalapú alapot biztosítanak a
családon belüli beszélgetésekhez, lehetővé téve a tudatosabb nevelői beavatkozást. Ez
eliminál számos konfliktushelyzetet a szülő-gyermek kommunikációban, ahol korábban
szubjektív érzékelésekre ("túl sokat vagy a telefonon") kellett hagyatkozni. Az
időbélyegzőkkel ellátott események konkrét alapot biztosítanak a konstruktív
beszélgetésekhez.

A rendszer nem egy tiltó eszköz, hanem egy monitorozó megoldás, amelynek célja a
figyelemfelhívás. A push értesítések révén a szülő azonnali visszajelzést kap a potenciálisan
problémás viselkedésről, így csökkentve a reakcióidőt. Társadalmi szintű hasznossága abban
rejlik, hogy hozzájárul a jövő generációjának digitális jólétéhez (digital well-being) azáltal,
hogy a szülők kezébe ad egy eszközt a felelős és biztonságos digitális nevelés támogatására.

Ahogy egy friss, innovációval és kutatás-módszertannal foglalkozó nemzetközi
konferenciakiadvány is megjegyzi, a kutatási eredmények megfelelő szervezése
kulcsfontosságú a továbbhasznosíthatóság szempontjából: "The evaluated work's discoveries
and conclusions have been organized in such a way that academics and developers working
in the same domain can utilize this work to help them make research decisions." (Çamlıca &
İbrahim, 2024)

Ez a megközelítés biztosítja, hogy a szakdolgozatban elvégzett munka ne csak egy
lezárt projekt legyen, hanem egy kiindulópont más, hasonló területen dolgozó szakemberek
számára.

A projekt társadalmi hasznosságán túl érdemes elvégezni egy mini költség-bevétel becslést a
projekt jövőbeli életképességének felmérésére.

1. Költségkomponensek (Becsült fejlesztési költség): A jelenlegi prototípus fejlesztési
költsége elsősorban a fejlesztői munkaidőben jelenik meg. A tervezés, implementáció
tesztelés és dokumentáció megközelítőleg 450-500 munkaórát vett igénybe. Ezt egy piaci
óradíjjal (12.000 - 15.000 Ft/óra) felszorozva a projekt szoftverfejlesztési "költsége" 5.4M -
7.5M Ft közé tehető. Fontos költségcsökkentő tényező, hogy a technológiai stack teljes
egészében ingyenes, nyílt forráskódú eszközökből áll, így szoftverlicenc-költség nem merült
fel. A felhasználói oldali üzemeltetési költség (pl. egy Raspberry Pi energiafogyasztása)
pedig elhanyagolható.

2. Bevételkomponensek, üzleti modell: Bár az alaprendszer FOSS és ingyenes marad, a 6.3
Jövőbeli fejlesztési lehetőségek fejezetben vázolt bővítésekre építve egy "Freemium" vagy
"Open-Core" üzleti modell építhető, amely pozitív megtérülést vetít előre.

12

●​ Célcsoport 1: Tech-tudatos szülők (1.6 Célcsoportok primer csoportja): Ők az
ingyenes, "self-hosted" verziót használják. Bevételt közvetlenül nem generálnak, de
hozzájárulnak a közösségépítéshez és a teszteléshez.

●​ Célcsoport 2: Kényelmi felhasználók (Nem IT-szakértő szülők): Ez a csoport hajlandó
fizetni a kényelemért. Számukra a 4. Vita fejezetben említett korlátok (SQLite, csak
Android) megszüntetése után egy hostolt SaaS (Software as a Service) verzió
kínálható.

○​ Miért fizetnének? Nem akarnak a telepítéssel, Dockerrel, Nginx-szel
foglalkozni. Egy "gondozásmentes" szolgáltatást keresnek.

○​ Mennyit fizetnének? Míg a kereskedelmi versenytársak (pl. Qustodio) évi
20.000 - 30.000 Ft-ot is elkérnek, a KidMonitor egy alacsonyabb, évi 10.000
Ft-os (vagy havi ~1000 Ft-os) díjjal is rendkívül versenyképes lehet.

Pozitív jövőkép: A becsült fejlesztési költség (5.4M-7.5M Ft) jelentős, azonban a piac (amit a
versenytársak árazása bizonyít) fizetőképes. A teljes célpiac töredékének (akár csak 500-800
fizető család) elérése a javasolt kedvező SaaS-díjjal már fedezné a kezdeti fejlesztési
költségeket és biztosítaná a jövőbeli, fenntartható működést és továbbfejlesztést (pl. iOS
app).

13

2. Szakirodalom feldolgozása

Egy gyakorlati, szoftverfejlesztési fókuszú szakdolgozat sem létezhet elméleti és

kontextuális alapok nélkül. Ez a fejezet célja, hogy megteremtse azt a szakirodalmi és

tudásbázist, amelyre a 3. Saját fejlesztés fejezetben bemutatott gyakorlati megvalósítás

építkezik.

A fejezet bemutatja, hogy a képzés tantárgyai miként alapozták meg a projekt

technikai és módszertani kivitelezését (2.1 Tantárgyak szakdolgozati kapcsolódása). Ezt

követően a dolgozat tágabb kontextusba helyezése történik meg: áttekintjük a

mobil-alkalmazásfejlesztés releváns fejlődési ívét (2.27 alfejezet), a szülői felügyeleti

rendszerek történetét (2.28 alfejezet), valamint a projekt filozófiai alapját adó "self-hosted" és

nyílt forráskódú (FOSS) mozgalmak meghatározó szerepét (2.29).

A felhasznált szakirodalom kiválasztása során követtem az egyetemi

követelményeket, amelyek hangsúlyt fektetnek a források sokszínűségére. Ennek

megfelelően a munka egyaránt támaszkodik magyar és angol nyelvű, 2020 előtti és utáni

publikációkra, valamint KJE-kötődésű és attól független anyagokra is. A 2. táblázat

összefoglalja a felhasznált irodalmak ezen kritériumok szerinti csoportosítását, igazolva a

kiegyensúlyozott forráskezelést.

14

 Angol /
Szakcikk

Angol /
Weblap

Magyar /
Szakcikk

Magyar /
Weblap

Régi / KJE 53. 53. 53. 41.

Régi / KJE
nincs 10., 15., 18., 44., 39. 52. 20. 7.

Új / KJE
van 9., 36. 12. 57. 37.

Új / KJE
nincs 51. 7., 26. 22. 17.

2. táblázat - A felhasznált irodalmak - Forrás: saját táblázat

2.1 A jog szerepe a modern társadalmakban

A szakdolgozat kiemelt figyelmet fordít a GDPR és a magyar adatvédelmi törvények

betartására, különös tekintettel az eszközhasználati adatok gyűjtésére és kezelésére. A

rendszer tervezésekor alapvető jogi követelmény volt a személyes adatok minimalizálása.

“Az adatvédelmi megfelelőség nem utólagos kiegészítés, hanem a fejlesztési folyamat szerves

része kell legyen. A GDPR által előírt "privacy by design and by default" elv értelmében

minden új termék vagy tevékenység tervezésekor figyelembe kell venni az adatvédelmi

alapelveket, minimalizálni kell a gyűjtött személyes adatok mennyiségét, és a legkorszerűbb

technológiával kell biztosítani azok védelmét” (Voigt – von dem Bussche, 2017, 89. o.). A

KidMonitor rendszer tervezése során ez az elv központi szerepet kapott: a MAC cím alapú

azonosítás, a helyi SQLite adatbázis és a minimális adatgyűjtés mind ezt a filozófiát tükrözi.

2.2 Adatbázisok

A projekt SQLite3 adatbázist használ az eszközhasználati adatok tárolására, amely az

Atomicitás, Konzisztencia, Izoláció, Tartósság (ACID) tulajdonságokkal rendelkezik és

15

megfelelő integritási megkötéseket biztosít. Az adatbázis tervezése során alkalmaztam a

normalizációs elveket, külön táblákban tárolva a felhasználókat, eszközöket, FCM tokeneket

és eseményeket. A gyakran használt mezőkre indexeket hoztam létre a gyors lekérdezések

érdekében (pl. MAC címek, időbélyegek).

2.3 Adatszerkezetek és algoritmusok

A backend Go alkalmazásban különböző adatszerkezetek kerülnek alkalmazásra:

hashmap-ek a MAC cím alapú eszköz azonosításhoz, queue struktúrák az FCM üzenetek

sorba állításához, és priority queue az eltérő prioritású riasztások kezeléséhez

(WARNING/CRITICAL). A ping algoritmus optimalizálása során figyelembe vettem a

hálózati terhelés minimalizálását random delay bevezetésével az eszközök közötti

lekérdezések között.

2.4 Az elektronika fizikai alapjai

Az eszköz monitorozó rendszer működéséhez elengedhetetlen a hálózati

infrastruktúra és az eszközök fizikai kapcsolatainak megértése. A projekt során figyelembe

vettem a különböző eszköztípusok (okostelefonok, táblagépek) energiafogyasztási jellemzőit,

különös tekintettel az akkumulátor-kímélő push értesítések implementálására.

2.5 Elektronikus áramkörök

A monitorozott eszközök hálózati interfészeinek működési elvei és a router DHCP

kiosztási mechanizmusa alapvető fontosságú a MAC cím alapú statikus IP címek

biztosításához. A projekt tervezésekor figyelembe vettem a különböző hálózati eszközök

(switch, router, access point) áramköri jellemzőit és azok hatását a ping válaszidőkre. Az

FCM szolgáltatás internetkapcsolata és az eszközök közötti kommunikációs csatornák

megbízhatósága kritikus tényező a rendszer működésében.

2.6 Emberi viselkedés és kommunikáció

A családi eszközhasználat monitorozása alapvetően emberi viselkedésformálási célt

szolgál, ahol a push értesítések pszichológiai hatását kell optimalizálni. A rendszer

felhasználói felülete tervezésekor figyelembe vettem a szülő-gyermek kommunikációs

dinamikákat és az értesítések stresszhatását.

16

Mobilhasználat hatása a családi kommunikációra

A túlzott mobileszköz-használat negatív hatásai a családi kapcsolatokra

tudományosan is igazoltak. Az ELTE Alfa Generáció Labor 2024-es kutatása megdöbbentő

eredményeket hozott: "A mobileszközöket gyakrabban használó óvodások esetében

alacsonyabb a szülő-gyermek interakció minősége és mennyisége, mint az ilyen eszközöket

nem használó kortársaiknál" (ELTE Alfa Generáció Labor, 2024). Ez a magyar kutatás

rávilágít arra, hogy a mobilhasználat már óvodáskorban is mérhető káros hatást gyakorol a

családi kommunikációra, ami indokolja olyan monitorozó rendszerek kifejlesztését, amelyek

objektív alapot nyújtanak a tudatos eszközhasználat kialakításához.

Viselkedésformálási stratégiák a rendszerben

A színkódolt riasztások (sárga WARNING, piros CRITICAL) választása a vizuális

kommunikáció alapelvein nyugszik, hogy intuitív és azonnali visszajelzést biztosítsanak. A

KidMonitor rendszer tervezése során tudatosan törekedtem arra, hogy a technológiai

megoldás ne helyettesítse, hanem támogassa a szülő-gyermek kommunikációt, lehetőséget

adva a família számára az eszközhasználatról való párbeszédre objektív adatok alapján.

2.7 Európai civilizáció és identitás

A digitális eszközhasználat és az időmenedzsment kérdése szorosan kapcsolódik az

európai munkakultúrához és családi értékrendhez. A projekt témája tükrözi az Ipar 4.0

korszak kihívásait, ahol a technológiai fejlődés és a hagyományos családi struktúrák között

egyensúlyt kell teremteni. A protestáns munkaerkölcs és a német hatékonyság eszmény is

befolyásolta a rendszer tervezését, ahol a strukturált időbeosztás és a tudatos eszközhasználat

hangsúlyos.

2.8 Felhasználói interfészek és vizualizáció

A Flutter mobilalkalmazás minimalista UI tervezése során alkalmaztam a modern UX

elveket: a tiszta, könnyen értelmezhető felület biztosítása céljából. Az értesítések vizuális

hierarchiája (színkódolás, ikonok, tipográfia) tudatos tervezési döntés eredménye. A backend

adminisztrációs felület tervezésekor is figyelembe vettem a használhatósági tesztekből

származó visszajelzéseket és az akadálymentesítési követelményeket.

17

2.9 Hálózatok és számítógép architektúrák

A projekt gerincét a TCP/IP protokoll stack és a VLAN szegmentálás alkotja, ahol a

felügyelt eszközöknek közös hálózati szegmensben kell elhelyezkedniük. A rendszer

architektúrája során figyelembe vettem a különböző hálózati topológiákat és a NAT (Network

Address Translation) konfigurációkat. Az FCM szolgáltatás eléréséhez szükséges internet

kapcsolat és a ping alapú monitorozás hálózati követelményei meghatározó tényezők voltak a

rendszer tervezésekor.

2.10 Informatikai védelem és biztonság

A rendszer biztonsági architektúrája többrétegű védelmet biztosít: SQL injection

elleni védelem, valamint tűzfal konfigurációk a backend védelméhez. A személyes adatok

védelme érdekében adatmaszkolást alkalmaztam és minimális jogosultságú felhasználói

fiókokkal futtatom a backend szolgáltatásokat. Az FCM tokenek biztonságos kezelése és a

push üzenetek titkosítása szintén központi biztonsági elem.

2.11 Komplex társadalomtudományi ismeretek

Az eszközhasználat monitorozása komplex társadalmi jelenség, amely érinti a

generációs különbségeket, a digitális szakadékot és a családi hierarchiát. A projekt során

figyelembe vettem a különböző társadalmi rétegek technológia-használati szokásait és az

eszközhasználat korlátozásának szociológiai hatásait.

A szülői kontroll alkalmazások inherens dilemmája különösen releváns a tizenévesek

esetében, ahol a családi biztonság és az egyéni autonómia iránti igény összeütközésbe kerül.

A szakirodalom szerint: "Previous research within teen mobile safety has used this tripartite

approach for identifying key technical design challenges with teens and parents; through this

lens, research found that safety, trust, and privacy were values that caused tension between

parents and teens" (Badillo-Urquiola et al., 2020). Ez a 2020-as tanulmány már rámutat a

szülői kontroll alkalmazások alapvető dilemmájára - a biztonság, bizalom és magánélet

közötti feszültségre, ami ma is aktuális kihívást jelent a családi eszköz monitorozó rendszerek

tervezésénél.

A rendszer etikai kérdései, mint a privacy és a szülői kontroll egyensúlya, szintén

meghatározó elemek a tervezésben. A KidMonitor fejlesztése során tudatosan törekedtem

18

arra, hogy a rendszer ne "kémkedő" jelleggel működjön, hanem támogató eszközként

szolgáljon a családi kommunikáció javítására és a tudatos eszközhasználat kialakítására.

2.12 Matematikai alapok

A ping algoritmus matematikai optimalizálása, a hálózati késleltetések statisztikai

elemzése és a használati idők matematikai modellezése központi szerepet játszik a

rendszerben. Az eszközök közötti ping intervallumok random eloszlásának matematikai

háttere biztosítja a hálózati terhelés egyenletes elosztását. A használati statisztikák

kiértékelésekor alkalmazott matematikai módszerek (átlag, medián, szórás) segítik a családi

eszközhasználat mintázatainak feltárását.

2.13 Operációs rendszerek

A backend Debian Linux 12 operációs rendszeren fut, amely stabil és biztonságos

környezetet biztosít a Go alkalmazás számára. A rendszer tervezésekor figyelembe vettem a

Linux process management elveit, a systemd szolgáltatások konfigurálását és a Hálózati Idő

Protokoll (NTP) időszinkronizálást. A jogosultsági szintek használata és a non-root

felhasználóként való futtatás is alapvető biztonsági követelmény volt.

2.14 Programozás

A projekt megvalósításához szükséges alapvető programozási készségek, mint a

változók kezelése, ciklusok, feltételes elágazások mind megjelennek a Go backend

implementációjában. Az alapvető adattípusok (string, integer, boolean) helyes használata és a

hibakezelési mechanizmusok implementálása kritikus eleme a stabil rendszer működésének.

A programozási alapelvek, mint a clean code és a proper error handling, végigkísérik a teljes

fejlesztési folyamatot.

2.15 Programozási alapelvek és módszertanok

A projekt során alkalmaztam a SOLID elveket, a DRY (Don't Repeat Yourself). A Go

nyelvben alkalmazott idiomatic patterns, mint a goroutinok használata a párhuzamos

eszközmonitorozáshoz, és a channel-ek alkalmazása a thread-safe kommunikációhoz. A kód

szervezésében a moduláris felépítést követtem.

19

2.16 Rendszermodellezés

A projekt során elkészített UML diagramok (rendszer diagram, szekvencia diagram,

állapot diagram) szemléltetik a különböző komponensek közötti kapcsolatokat és a rendszer

működési folyamatait. A ping folyamat, az FCM értesítések küldésének menete és a határidő

ellenőrzési mechanizmusok mind strukturált modellezéssel kerültek megtervezésre.

2.17 Rendszertervezés

A négy komponensű architektúra (felügyelt eszközök, Go backend, Flutter app,

hálózati infrastruktúra) tervezése során alkalmaztam a moduláris felépítés elveit és a

skálázhatósági szempontokat. A rendszer tervezésekor figyelembe vettem a következő

nem-funkcionális követelményeket: teljesítmény (maximum 100 eszköz), megbízhatóság

(ACID adatbázis), karbantarthatóság és biztonság (minimális jogosultságok).

2.18 Szoftverarchitektúrák

A projekt clean architecture elveket követ, ahol a üzleti logika elkülönül az

infrastrukturális rétegektől. A backend rétegzett architektúrája biztosítja a könnyű

tesztelhetőséget és karbantarthatóságot. “The software architecture of a program or

computing system is the structure or structures of the system, which comprise software

components, the externally visible properties of those components, and the relationships

among them.” (Bass, Clements & Kazman, 2012). “A réteg alapú megközelítés egyik előnye,

hogy jól összeköthető az inkrementális fejlesztés gondolatmenetével. Amennyiben egy réteg

elkészült, az általa biztosított szolgáltatások elérhetővé tehetők. További előnye, hogy mivel a

rétegek jól elkülöníthetők egymástól, melyek interfésze jól definiált, így egy réteg könnyedén

helyettesíthető egy másik, azzal ekvivalens réteggel, ha interfésze nem változik meg.” (A

szoftvertervezés folyamata, Gyires Könyvtár, 2019).

Az FCM integráció külön service layer-ben került implementálásra.

2.19 Szoftvertesztelés

“A tesztelés alapvető célja a hibák felderítése a rendszerben, valamint annak

ellenőrzése, hogy a megvalósított termék megfelel-e a specifikációknak és a felhasználói

igényeknek.” (Miau Wiki, Tesztelés, 2008). A projekt során unit testeket készítettem mind a

20

Go backend, mind a Flutter alkalmazás kritikus funkcióihoz. Az integrációs tesztek

biztosítják a különböző komponensek (adatbázis, FCM, ping rendszer) együttműködését. A

felhasználói elfogadási tesztek valós környezetben kerülnek végrehajtásra, ahol a rendszer

gyakorlati használhatóságát és a push értesítések hatékonyságát teszteljük. A test coverage

mérések és az automated testing pipeline is része a quality assurance folyamatnak.

2.20 Szoftverüzemeltetés

A Go alkalmazás deployment stratégiája statically linked binary formátumban

történik, amely egyszerűsíti a telepítést és a dependency management-et. A konfigurációs

fájlok (/etc/device-monitor/config.yaml) és a log fájlok kezelése, a backup stratégiák és a

monitoring követelmények mind részei a production deployment tervének. A systemd service

konfigurálása és az automatic restart mechanizmusok biztosítják a szolgáltatás folyamatos

elérhetőségét.

2.21 Vállalati gazdaságtan

A projekt költség-haszon elemzése során figyelembe vettem a fejlesztési költségeket

(munkaórák, infrastruktúra) és a várható hasznokat (családi harmónia, tudatosabb

eszközhasználat). A különböző alternatív megoldások (fizetős commercial software vs. saját

fejlesztés) gazdaságossági összehasonlítása is része a döntéshozatali folyamatnak. A rendszer

fenntartási költségei és a skálázhatóság gazdasági vonatkozásai szintén figyelembevételre

kerültek.

2.22 Vezetési és vállalkozási ismeretek

A projekt menedzsment során alkalmaztam az agile fejlesztési metodológiákat,

sprintekben szervezve a fejlesztési mérföldköveket. “A scrum fejlesztési ciklusai a sprintek,

amik rövid, a csapat által választott hosszúságú, általában 1 és 4 hét közötti futamok, amikor

egy előre meghatározott tennivaló végére kerül pont úgy, hogy a sprint végén kerek egészként

használható funkcionalitást kapjunk a kezünkbe.” (HWSW, 2022). A stakeholder

management (család tagjai, mint felhasználók) és a change management kérdései is előtérbe

kerültek a rendszer bevezetése során.

21

2.23 Innovatív információs és kommunikációs technológiák az IT-biztonság

kapcsán

A projekt során alkalmazott modern technológiák, mint a Firebase Cloud Messaging,

a Go programming language és a Flutter framework, mind a legújabb IT trendeket képviselik.

A push notification technológia és a real-time monitoring rendszerek innovatív alkalmazása a

családi digitális biztonság területén új megközelítést jelent. Az edge computing elvek

alkalmazása a lokális hálózati monitoring során is tükrözi a modern IT biztonsági

megközelítéseket.

2.24 IT-biztonsági fejlesztések minőség- és projektmenedzsmentje

A biztonsági követelmények (GDPR compliance, data encryption, access control)

integrálása a fejlesztési folyamatba és a quality assurance gyakorlatokba központi eleme a

projektnek. A security by design megközelítés alkalmazása minden fejlesztési fázisban és a

penetration testing tervek a minőségbiztosítási folyamat részei. A projektmenedzsment

eszközök (Git, continuous integration) is támogatják a biztonságos fejlesztési gyakorlatokat.

2.25 Mesterséges intelligenciák az IT-biztonság területén

Bár a jelenlegi implementáció nem tartalmaz explicit AI komponenseket, a rendszer

által gyűjtött használati adatok lehetőséget biztosítanak jövőbeli machine learning

alkalmazásokra anomália detektálás céljából. A viselkedés analízis és a mintafelismerés

módszerek potenciális alkalmazása a szokatlan eszközhasználati mintázatok felismerésére és

a proaktív riasztási mechanizmusok fejlesztésére irányuló jövőbeli fejlesztési lehetőségeket

kínál.

2.26 Tudásmenedzsment az IT-biztonság területén

A projekt dokumentációs stratégiája, a knowledge base építése és a best practices

gyűjtése mind a tudásmenedzsment területéhez tartozik. A fejlesztési folyamat során szerzett

tapasztalatok dokumentálása, a troubleshooting guide-ok készítése és a user manual

létrehozása biztosítja a tudás megőrzését és átadhatóságát. A continuous learning approach és

a industry best practices adaptálása is része a tudásmenedzsment folyamatnak.

22

2.27 Mobil-alkalmazásfejlesztési Metodológiák Fejlődése

A mobil-alkalmazásfejlesztés története viszonylag rövid, de rendkívül dinamikusan fejlődő

terület. A 2000-es évek végén, az okostelefonok (különösen az iPhone és az Android

platformok) robbanásszerű elterjedésével a fejlesztők kezdetben kizárólag natív

technológiákra támaszkodhattak (Objective-C/Swift iOS-re, Java/Kotlin Androidra). Bár ez a

megközelítés biztosította a legjobb teljesítményt és hozzáférést a platformspecifikus

funkciókhoz, üzleti szempontból komoly kihívást jelentett: ugyanazt az alkalmazást kétszer

kellett kifejleszteni és karbantartani, ami dupla erőforrást igényelt.

A költséghatékonyság iránti igény hívta életre a hibrid és cross-platform megoldásokat. A

korai próbálkozások (pl. Apache Cordova/PhoneGap) webes technológiákat (HTML, CSS,

JavaScript) ágyaztak egy natív "wrapperbe". Ezek gyors fejlesztést tettek lehetővé, de

teljesítményben és felhasználói élményben (UX) messze elmaradtak a natív társaiktól.

A valódi áttörést a "compiled-to-native" keretrendszerek hozták el, mint a React Native és a

Google által fejlesztett Flutter. Jelen szakdolgozatban is a Flutter mellett döntöttem, mivel ez

a technológia egyedülálló módon nem a natív UI komponensekre épít, hanem saját, Skia

grafikus motorjával rajzolja meg a felhasználói felületet. Ez garantálja a pixelpontos

azonosságot minden platformon, miközben kiemelkedő, natívhoz közeli teljesítményt

biztosít. A KidMonitor mobilalkalmazásának fejlesztése során ez a technológia tette lehetővé

a gyors, iteratív UI fejlesztést és megalapozta a jövőbeli iOS-verzió lehetőségét , ami

stratégiai fontosságú volt a projekt "Kizárások, korlátozások" fejezetében definiált fókusz

tartásához.

2.28 Az Eszközmonitorozás és Szülői Felügyelet Története

Az eszközhasználat felügyeletének igénye egyidős a személyi számítógépek elterjedésével. A

korai, 1990-es évekbeli megoldások (pl. Net Nanny, Cyber Patrol) kizárólag asztali

számítógépekre fókuszáltak, és fő funkciójuk a webes tartalomszűrés volt, jellemzően

kulcsszavak és URL-listák alapján. Ezek a rendszerek még nem az időkorlátokra, hanem a

káros tartalmak blokkolására helyezték a hangsúlyt.

A 2000-es években, a szélessávú internet elterjedésével jelent meg az időmenedzsment mint

funkció. A szülők már nemcsak azt akarták szabályozni, hogy mit, hanem azt is, hogy mennyi

ideig érhet el a gyermek az interneten.

23

A valódi paradigma-váltást az okostelefonok 2007 utáni megjelenése hozta el. A probléma

átkerült a "családi PC-ről" a személyes, mindig online lévő mobileszközökre. Erre válaszul

először a nagy operációs rendszer-gyártók léptek, és beépítették a saját megoldásaikat (pl.

Apple Screen Time, Google Family Link). Ezzel párhuzamosan virágzásnak indult a

kereskedelmi, felhőalapú szülői felügyeleti szoftverek (SaaS) piaca (pl. Qustodio, Circle

Home Plus).

Ezek a modern megoldások rendkívül kifinomultak (alkalmazás-szintű blokkolás,

helymeghatározás), azonban két komoly hátránnyal küzdenek: magas havi/éves előfizetési

díjjal és súlyos adatvédelmi aggályokkal. A felhasználók (családok) legérzékenyebb adatai

(pl. mikor, hol, mit csinál a gyermek) harmadik fél szervereire kerülnek. Jelen szakdolgozat

motivációja és a KidMonitor rendszer "self-hosted" architektúrája közvetlen válasz erre a

piaci résre és adatvédelmi problémára, összhangban a GDPR "privacy by design" elvével.

2.29 A saját üzemeltetésű és Nyílt Forráskódú Alternatívák Szerepe

A 2010-es és 2020-as évek technológiai világát a központosított, előfizetéses szolgáltatások

dominálják. Erre a trendre adott markáns ellenreakcióként erősödött meg a saját üzemeltetésű

és nyílt forráskódú (FOSS) mozgalom. Ennek a filozófiának a lényege az adatok feletti teljes

kontroll visszaszerzése, az előfizetési díjak elkerülése és a transzparencia biztosítása.

A felhasználók és fejlesztők egyre növekvő tábora – részben az adatvédelmi botrányok és a

"Big Tech" cégek adatgyűjtési gyakorlata miatt – bizalmatlanná vált a zárt, felhőalapú

rendszerekkel szemben. A képzés által is hangsúlyozott GDPR-megfelelőség és az

adatvédelem iránti igény olyan népszerű FOSS projekteket hívott életre, mint például a

Pi-hole (hálózati szintű reklámblokkoló) vagy a Nextcloud (saját felhőtárhely).

A KidMonitor projekt pontosan ebbe a filozófiai vonalba illeszkedik. Ahelyett, hogy egy

újabb felhőalapú szolgáltatást hozna létre, egy olyan rendszert biztosít, amely teljes

egészében a felhasználó saját hardverén (pl. egy otthoni Linux szerveren) fut. Az adatok

(eszközhasználati logok) soha nem hagyják el a helyi hálózatot, hacsak a felhasználó (szülő)

ezt kifejezetten nem engedélyezi (pl. az FCM értesítések révén). Ez a megközelítés

maximális adatvédelmet biztosít, és teljesíti a dolgozat motivációjában megfogalmazott célt:

egy megbízható, költséghatékony és adatvédelmileg tudatos alternatíva nyújtása a

24

kereskedelmi szoftverekkel szemben . A projekt társadalmi hasznossága így nemcsak a

funkcionalitásban, hanem az adat-szuverenitás biztosításában is megmutatkozik.

25

3. A KidMonitor rendszer megvalósítása

3.1 Követelmények meghatározása és elemzése

Cél egy otthoni-családi, digitális eszközök használati idejét ellenőrző szoftver

fejlesztése, ami ingyenes push üzeneteken keresztül képes figyelmeztetni, az előre

meghatározott szabályok alapján. Az eseményeket logolni szükséges, hogy belőlük a

későbbiekben statisztikát lehessen készíteni

3.2 Részletes igényfelmérés a valós felhasználókkal

A szülői felügyelet társadalmi igénye kutatási adatokkal is alátámasztott. A Pew

Research Center (2025) legfrissebb felmérése szerint "Half of parents of teens say they look

through their teen's phone. When we asked teens if they thought their parents ever look

through their phones, 43% believed this had happened." Ez a tekintélyes amerikai

kutatóintézet által végzett 2025-ös vizsgálat rámutat arra, hogy a szülők jelentős része aktívan

törekszik gyermeke digitális tevékenységeinek nyomon követésére, ugyanakkor a jelenlegi

módszerek (telefonok átböngészése) nem nyújtanak átfogó, objektív képet az

eszközhasználatról.

A KidMonitor rendszer ezt az igényt kívánja kielégíteni azzal, hogy nem invazív,

automatizált monitorozást biztosít push értesítésekkel, amely tiszteletben tartja a családi

dinamikát, miközben objektív adatokat szolgáltat a szülők számára.

3.3 Funkcionális és nem-funkcionális követelmények összeállítása

●​ A rendszer informatikai szakértelemmel rendelkező felhasználó számára egyszerű,

szkriptesített telepíthetősége... elsődleges szempont. A nem-informatikus célcsoport

számára a 6.3 Jövőbeli fejlesztési lehetőségek fejezetben vázolt SaaS-modell jelenthet

megoldást.

●​ Figyelembe véve az itthoni adottságokat a backend debian linux alatt kell fusson.

●​ Backend Go alkalmazás lehetőleg statikusan linkelt binárissal készüljön, lehessen

hordozni.

●​ Az alkalmazásnak és a felügyelt eszközöknek közös VLAN-ban kell elhelyezkedniük.

●​ Monitorozott eszközökön engedélyezve kell lennie a ping fogadásnak.

26

●​ Monitorozott eszközöknek a saját MAC címük alapján statikus IP címet kell

biztosítani DHCP-n keresztül a router segítségével, hogy egyszerűen lehessen kezelni

azokat az adatbázisban.

●​ Idő szinkronizálás: NTP (systemd-timesync) szerverekkel történik.

●​ Push fogadásnak akkor is működnie kell, ha a mobilalkalmazás nem fut, vagy nincs

előtérben, figyelembe véve az akku használatot és privát szférát.

●​ A backendnek el kell tudnia érni az FCM szervereket.

●​ A felügyelt eszközöknek elérhetőnek kell lenni az internet felől, hogy push-t

megkaphassák.

●​ Az energiahatékony működés fontos, különös tekintettel a mobiltelefonra.

●​ Biztonságos adatkezelés: Kiemelten fontos, hogy a rendszer megfelelő titkosítást

használjon az adatátvitel során, különösen a push üzenetek küldésekor, és a

felhasználói adatokhoz csak a jogosult felhasználók férjenek hozzá.

3.3.1 Használati esetek meghatározása a backend és a mobil alkalmazás számára

●​ Warning üzenet, határidő lejárta előtt 10 perccel, prio 1 üzenet küldése a felhasználó

készülékére.

●​ Critical üzenet, határidő elérésekor prio 2 üzenet küldése a felhasználónak és

adminisztrátornak.

●​ Egy felhasználónak több eszköze is lehet.

●​ Ha ugyanannak a felhasználónak egy időben több eszköz is ráfut a riasztásra, akkor

elég egy figyelmeztetést küldeni.

●​ Határidő elérésekor elég egy riasztást kiküldeni ugyanannak a felhasználónak.

●​ Mobilalkalmazás csak üzenetet fogad és kiír, nincs más funkciója.

3.3.2 Különböző felhasználói szerepek és jogosultságok meghatározása

A rendszernek két fő felhasználói csoportja van:

●​ Szülő (adminisztrátor): Teljes körű hozzáféréssel rendelkeznek, jogosult a

konfiguráció változtatására, beállíthatják az időkorlátokat és figyelemmel kísérhetik

az eszközhasználatot. Amikor a használati idő lejár, értesítést kapnak.

●​ Gyermek (felhasználó): A gyermek felhasználóként csak értesítéseket kap az

eszközhasználati szabályokról és a hátralévő időről, nincs jogosultságuk a beállítások

módosítására.

27

3.4 Kizárások, korlátozások

A dolgozat keretei között nem kívánok foglalkozni a hálózati eszközök irányításával, aktív

vezérlésével, például kikapcsolni őket a használati idő túllépése után.

Gyerekek általi kijátszás elleni védelem, nem fókuszálunk olyan fejlett biztonsági

megoldásokra, amelyek meggátolják, hogy a felügyelt eszközöket használó gyerekek

kijátsszák a rendszert (pl. MAC cím, IP cím megváltoztatása).

Offline működés támogatása: A rendszer csak akkor működik megfelelően, ha a felügyelt

eszközök és a mobilalkalmazás online állapotban vannak. Az offline monitorozás vagy

értesítések nem támogatottak.

Push üzenetek személyre szabása: Az üzenetek tartalma egyszerű, és nem lesz lehetőség

egyéni értesítések vagy speciális beállítások létrehozására a felhasználók számára.

Eszközhasználat pontos mérési pontossága: Mivel a rendszer 10 másodpercenként pingel,

nem biztosít teljesen precíz, másodpercre pontos adatokat, de ez a szintű pontosság elegendő

az általános monitorozáshoz.

Nincs tervben többnyelvűre írni a programot.

Jelentős költségekkel járna az IOS fejlesztés és Apple storeba publikálása, emiatt ezt az irányt

csak elméleti szinten kezelem, csak Androidos mobilalkalmazást adok ki.

Magas rendelkezésre állásra nincs szükség.

Teljesítményelvárás nincs, az architektúra felépítése egy korszerű PC számára is lehetővé

teszi az alkalmazás és adatbázis futtatását.

A dolgozat nem végez mély, filozófiai etikai elemzést, de a kockázatelemzés során érinti a

felmerülő gyakorlati etikai dilemmákat.

3.5 Alternatív igények felmérése

A projekt fejlesztése során különböző megrendelői környezetek eltérő igényeket

támaszthattak volna a rendszerrel szemben. Az alábbiakban bemutatom a legvalószínűbb

alternatív felhasználási eseteket és azok követelményeit.

Vállalati környezet - munkaidő monitorozás

HR részleg számára munkavállalók számítógépes munkaidejének nyomon követése a

produktivitás mérése és munkajogi megfelelőség biztosítása céljából.

Követelmény példák:

28

Részletes alkalmazás használati statisztikák (mely programokat, mennyi ideig használják),

dashboard komplex riportolási funkciókkal, Active Directory integráció, adatvédelmi

megfelelőség fokozott hangsúllyal (munkavállalói jogok), automatikus időnaplózás és

jelenléti riportok generálása.

Oktatási intézmény - diák eszköz monitorozás

Iskolai környezetben tanulók figyelmének fenntartása tanóra alatt, nem oktatási célú

eszközhasználat korlátozása.

Követelmény példák:

Osztálytermi csoportos vezérlési funkciók, tanórarend szerinti automatikus korlátozások,

oktatási alkalmazások whitelist kezelése, tanári felületi távoli képernyő megtekintési

lehetőség, szülői hozzáférés a gyermek iskolai eszköz használatához.

Egészségügyi alkalmazás - screen time korlátozás

Orvosi ajánlásra alapozott digitális detox program támogatása páciensek számára a

szemegészségügyi vagy mentálhigiénés problémák kezelése céljából.

Követelmény példák:

Orvosi protokollok szerinti korlátozási sémák, progresszív korlátozás fokozatos

csökkentéssel, egészségügyi adatok tárolása és elemzése, orvosi jelentések automatikus

generálása, motivációs és gamification elemek beépítése.

Szociális szolgáltatás - családsegítő program

Problémás családokban a gyermekek túlzott képernyő használatának csökkentése szociális

munkás felügyelete mellett.

Követelmény példák:

Anonimizált adatkezelés fokozott biztonságával, szociális munkás számára monitoring

felület, család bevonására irányuló kommunikációs eszközök, hosszú távú trendkövetés és

beavatkozási javaslatok, krízishelyzet kezelési protokollok.

Kis- és középvállalkozás - IT biztonság

Informatikai biztonsági politika betartatása, magánjellegű internet használat korlátozása

munkaidőben.

Követelmény példák:

29

Weboldalak kategorizálása és blokkolása, sávszélesség menedzsment, biztonsági incidensek

detektálása, megfelelőségi auditok támogatása, költségoptimalizálás internet használat

alapján.

3.6 Rendszer és Architektúra tervezés

A rendszer architektúrájának tervezése során a következő fő szempontokat vettem

figyelembe:

●​ Moduláris felépítés a könnyebb karbantarthatóság érdekében.

●​ Skálázhatóság: a rendszernek képesnek kell lennie maximum 100 eszköz egyidejű

kezelésére.

●​ Biztonság: a rendszer csak a szükséges minimális jogosultságokkal futhat.

●​ Hatékony adatbázis-szerkezet a gyors lekérdezések, hordozhatóság érdekében.

A rendszer architektúrája négy fő komponensre osztható:

●​ Felügyelt eszközök: Ezek a felhasználók eszközei (pl. telefon, tablet), amelyek

időkorlátozás alá esnek. A rendszer pingelni fogja ezeket az eszközöket, és logolja a

használati időket.

●​ Backend: A backend a felügyelt eszközök és a mobilalkalmazások közötti

adatkapcsolatért és a adminisztratív felület kiszolgálásáért felelős. A backend Go-ban

készül és Debian Linux alatt fut. Képes lesz a felhasználók és eszközeik kezelésére,

valamint a push üzenetek küldésére az Firebase Cloud Messaging segítségével.

●​ Mobilalkalmazás (Flutter): A felhasználók mobilkészülékein futó Flutter app az

FCM-en keresztül érkező push értesítések fogadására szolgál.

●​ Hálózat, LAN/WAN.

Backend futtató környezet linux alapokra kerül, az operációs rendszer: Debian Linux 12,

x86_64 architektúra.

3.7 Verziókezelés

Verziókezelés és GIT használata A rendszer fejlesztése GIT verziókezelő rendszerrel

történik, amely biztosítja a következőket:

Branch használata: Külön brancheket használok az új funkciók vagy javítások elkészítéséhez,

majd azokat a főágba (main branch) integrálom.

30

Verziókövetés: Az egyes változatok és commit-ok visszakövethetőek, ezáltal bármikor

lehetőség van korábbi verziók visszaállítására vagy átvizsgálására.

3.8 Objektum Modell és UML diagramok

Rendszer UML diagram

●​ Rendszer fő entitásai és kapcsolataik

●​ Adatmodellek és metódusok

●​ Kapcsolatok típusai és számossága

Ábra 1. Rendszer diagram

Szekvencia diagram

Ping Folyamat (10 másodpercenként)

●​ Backend lekérdezi az összes felügyelt eszközt

31

●​ ICMP ping kérést küld minden eszközre

●​ Frissíti az eszköz státuszát (online/offline, RTT)

●​ Eseményt hoz létre a ping eredményről

Határidő Ellenőrzés

●​ DeadlineChecker lekéri az aktuális időponthoz tartozó aktív határidőket

●​ Ellenőrzi az eszközök online állapotát

●​ Feltételes elágazások:

○​ 10 perc a határidőig: WARNING értesítés

○​ Határidő lejárt: CRITICAL értesítés

Push Értesítések Küldése

●​ Backend lekéri a felhasználó FCM tokenjét

●​ FCM Service előkészíti az értesítést

●​ Firebase-en keresztül küldi a mobile appnak

●​ Visszajelzés feldolgozása és státusz frissítés

●​ Esemény naplózása

Mobile App Feldolgozás

●​ Értesítés fogadása

●​ Felhasználói felület frissítése

●​ Interakciók követése

Technikai részletek:

●​ Aktivációs blokkok mutatják az egyes komponensek aktív időszakait

●​ Szinkron hívások (folytonos vonalak) és visszatérési értékek (szaggatott vonalak)

●​ Feltételes elágazások (alt blokkok) a különböző értesítési típusokhoz

●​ Időzített folyamatok jelzése (10mp ping interval)

32

Ábra 2. Szekvencia diagram

Állapot diagram

Állapotok színkódolással:

●​ 🔘 Initial State (szürke) - Eszköz regisztrálva

●​ 🔵 Online (kék) - Eszköz elérhető és válaszol

●​ ⚫ Offline (szürke) - Ping timeout, nem elérhető

●​ 🟡 Warning (sárga) - 10 perc van a határidő lejártáig

●​ 🔴 Critical (piros) - Határidő lejárt, eszköz még online

●​ 🟢 Removed (zöld) - Eszköz eltávolítva (soft delete)

Állapotátmenet feltételek:

●​ Ping alapú: ICMP válasz < 5s (online) vs timeout > 5s (offline)

●​ Időalapú: 10 perc warning trigger és határidő lejárt critical trigger

33

●​ Rendszeres ellenőrzés: 10 másodpercenkénti ping ciklus

●​ Admin műveletek: Eszköz eltávolítása bármely állapotból

FCM Értesítések integrálása:

●​ Warning állapot: Sárga színkód, priority = 1

●​ Critical állapot: Piros színkód, priority = 2

●​ Duplikáció védelem: lastWarningsSent/lastCriticalSent timestamp-ek

Hibaállapot kezelés:

●​ Offline állapotban ping retry mechanizmus

●​ Graceful visszatérés Online állapotba

●​ Soft delete helyett hard delete opció

●​ Új időszak automatikus reset

Ábra 3. Állapot diagram

34

3.9 Adatbázis tervezés

A követelmények elemzése után az SQLite3 mellett döntöttem, az alábbi szempontok

miatt:

Egyszerűbb telepítés és karbantartás:

Nem igényel külön szervert vagy szolgáltatást, egyetlen fájlként tárolódik (~600KB

alapméret), nincs szükség külön konfigurációra, vagy felhasználó kezelésre, könnyebb

biztonsági mentés (elég egy fájlt másolni).

Erőforrásigény:

Minimális memóriahasználat, mivel nem fut külön folyamatként, kisebb tárhely igény, mint

amit egy MySQL csomag foglal.

Megbízhatóság:

ACID kompatibilis, biztonságos tranzakció kezelés, automatikus helyreállítás áramkimaradás

esetén, beépített integritás ellenőrzés.

Fejlesztési szempontok:

Kiváló Go könyvtár támogatás, egyszerűbb hibakeresés, könnyebb verziókövetés (az

adatbázis fájl része lehet a verziókezelésnek), hordozható, könnyen mozgatható más

rendszerre.

Skálázhatóság és teljesítmény:

A várható adatmennyiség (néhány eszköz) könnyen kezelhető, gyors olvasási műveletek.

Miért nem MariaDB:

Plusz erőforrásigény, bonyolultabb telepítés és karbantartás, komplexebb biztonsági

beállítások szükségesek.

SQLite3 korlátozások, amik nem jelentenek problémát esetünkben:

Nincs beépített replikáció, korlátozott párhuzamos írási műveletek, nincs beépített

felhasználó kezelés, így az alkalmazás szintjén kezeljük a jogosultságokat.

3.9.1 Normalizálás folyamata

Első normálforma - 1NF, Minden táblázatnak tartalmaznia kell olyan mezőket,

amelyek egyedi értékeket tárolnak, és az ismétlődő csoportokat kerülni kell. Példa: A

"Felhasználók" táblában minden egyes felhasználó egy egyedi rekorddal rendelkezzen. Ha

valakinek több eszköze van, akkor azok egy külön "Felügyelt eszközök" táblában legyenek.

35

Második normálforma - 2NF, A tábla minden nem-kulcs mezője teljes mértékben

függjön az elsődleges kulcstól, azaz ne legyen részleges függés. Példa: A "Felügyelt

eszközök" tábla esetében minden mező, például a MAC cím és az IP cím egyértelműen a

felhasználóhoz és az eszközhöz kell, hogy kapcsolódjon.

Harmadik normálforma - 3NF, Nincs tranzitív függőség, vagyis egy nem-kulcs mező

nem függhet egy másik nem-kulcs mezőtől. Példa: Ha van olyan meződ, amely például egy

eszköz típusát (Android/iOS) és annak gyártóját tárolja, ezeket külön kell választani. Az

eszköztípusok egy külön táblában lehetnek, így elkerülhető a redundancia.

3.9.2 SQL tábla szerkezetek

Kódrészlet 1. SQL szerkezet

A tervezés során alkalmazott normalizálási lépések és a relációs modell felépítése

közvetlenül a 2.2 Adatbázisok tantárgy keretében elsajátított elméleti alapokra épül.

3.10 Biztonsági tervezés

Nem rootként futtatjuk a szerveroldali alkalmazást. Go könyvtárak használata:

Biztonsági könyvtárak használata, mint pl. SQL injection elleni védelem (vö. 2.10

Informatikai védelem és biztonság). Minden adatbevitel validálva lesz a backend oldalán,

hogy minimalizálja a támadási felületeket.

Tűzfal beállítása: A tűzfal szabályok korlátozzák a backend adminisztrációs felülethez

való hozzáférést csak engedélyezett IP-címekről.

Felhasználói hitelesítés és authorizáció: Kétszintű hozzáférési jog (adminisztrátor és

felhasználó). Az adminok teljes jogosultsággal bírnak, a felhasználók csak read-only jogokkal

rendelkeznek.

3.11 Backend alkalmazás tervezése Go-ban

A rendszer 10 másodpercenként pingeli a felügyelt eszközöket, így biztosítja az

aktuális használati információkat anélkül, hogy túlzott hálózati terhelést okozna. Az eszközök

közötti pingek random idővel lesznek eltolva a terhelés csökkentése érdekében.

A komplex monitorozási rendszerek objektív értékelési módszereinek kidolgozása

területén a hazai kutatások is jelentős eredményeket érnek el. A Mesterséges Intelligencia

Alapú Ugrás (MIAU) legfrissebb tanulmánya szerint "The increasing adoption of e-learning

36

platforms has revolutionized educational practices and generated rich log data that can be

harnessed to evaluate student performance objectively. This study proposes a comprehensive

model that leverages 29 distinct attributes extracted from Moodle (e-learning platform) log

data to provide a multifaceted/objective evaluation of student performance." (Turtogtokh,

Pitlik & Pitlik Jr., 2025)

Ez a KJE kötődésű kutatási megközelítés inspirálta a KidMonitor rendszer adatgyűjtési

stratégiájának kialakítását is. A következő kulcs adatpontokat gyűjtjük az eszközhasználat

objektív méréséhez:

Ping válaszidők (RTT értékek), Eszközök online státusza időbélyegekkel, Használati

időszakok kezdete és vége, Értesítések küldésének és fogadásának naplózása, Hálózati

kapcsolódások gyakorisága.

3.12 Mobilalkalmazás tervezése

A Felhasználói felület egyszerű, minimalista UI-val rendelkezik, amely csak a push üzenetek

fogadására és megjelenítésére szolgál.

UX: Egyszerű logó indításkor, majd egy üres képernyő a verziószámmal és értesítésekkel.

1.​ Prio 1. (WARNING): Sárga szín, ha a határidő lejárta előtt 10 perccel.

2.​ Prio 2. (CRITICAL): Piros szín, ha a határidő lejárt.

A push értesítések fogadása és megjelenítése egyszerű default üzenet lesz, a karaktertípus

alapbeállítás, kivéve a színek.

37

​​

Ábra 4. Mobilalkalmazás képernyő

Az FCM használatával a backend képes push üzeneteket küldeni a mobilalkalmazásnak, a

prioritási szintek (WARNING/CRITICAL) meghatározásával.

3.13 Implementáció és fejlesztés

3.13.1 Fejlesztés mérföldkövek

A fejlesztés menetét a következő mérföldkövekben határoztam meg:

1.​ Backend alapstruktúra kialakítása Go-ban.

2.​ Adatbázis séma implementálása.

3.​ Eszköz Monitorozó rendszer fejlesztése.

4.​ FCM integráció megvalósítása.

5.​ Flutter alkalmazás alap struktúrájának kialakítása, platform-specifikus kódok írása,

csak Androidra.

6.​ Push értesítések implementálása.

7.​ Felhasználói felület finomhangolása és biztonsági funkciók beépítése.

38

8.​ Tesztelési fázis.

9.​ Súgó rendszer fejlesztése.

3.13.2 Backend implementáció

A KidMonitor backend Go programozási nyelven került implementálásra, amely –

ahogy az a 3.19.1 fejezetben bemutatásra kerül – kiváló teljesítményt nyújt (pl. átlagosan

47ms adatbázis-válaszidő mellett) hálózati alkalmazások fejlesztéséhez. A backend

architektúrája moduláris felépítésű, amely megkönnyíti a karbantartást és a további

fejlesztést. A szerver oldali komponensek kialakításakor a "Backend as a Service" (BaaS)

modell mellett döntöttem, kihasználva a Firebase Cloud Messaging nyújtotta lehetőségeket.

“Ez a megközelítés lehetővé teszi a fejlesztők számára, hogy a kliensoldali logikára

fókuszáljanak, miközben a skálázható és megbízható háttér-infrastruktúrát (pl. push

értesítések, adatbázis-kezelés) egy külső szolgáltató biztosítja (Raut, 2021).” A BaaS modell

alkalmazása jelentősen felgyorsította a fejlesztési folyamatot és csökkentette a

szerverüzemeltetéssel járó komplexitást.

Ábra 5. Backend és Flutter futtatás, Android Studio Emulátor képernyő egyben

39

3.13.3 Projekt struktúra és szervezés

A projekt szervezése során a Go közösségben elfogadott bevált gyakorlatokat

követtem. A cmd/main.go fájl szolgál belépési pontként, amely a Cobra CLI könyvtárat

használja a különböző parancsok kezelésére (start, init, status, test, cleanup). Az internal

package-ben helyezkednek el a core modulok:

●​ database: SQLite3 adatbázis kezelési logika

●​ ping: Hálózati eszközök monitorozása

●​ fcm: Firebase Cloud Messaging integráció

●​ deadline: Időkorlátok és értesítések kezelése

●​ api: REST API végpontok

●​ config: Konfigurációs fájl kezelése

●​ models: Adatmodellek és struktúrák

3.13.4 Adatbázis réteg implementációja

Az adatbázis réteg a Go Objektum-Relációs Leképező (GORM ORM) könyvtárat

használja, amely automatikus migrációkat és type-safe adatbázis műveleteket biztosít. A

database.go fájlban implementált DB wrapper struktúra biztosítja a kapcsolat poolingot és az

optimalizált indexeket:

Kódrészlet 2. Adatbázis pool

A gyakran használt mezőkre indexek kerültek létrehozásra a teljesítmény javítása

érdekében, különös tekintettel a MAC címek és timestamps mezőkre.

3.13.5 Ping monitorozó rendszer

A ping monitoring a rendszer szíve, amely 10 másodpercenként ellenőrzi a felügyelt

eszközök elérhetőségét. A ping.go modul goroutinokat használ a párhuzamos eszköz

monitorozáshoz, valamint random delay-t alkalmaz a hálózati terhelés egyenletes elosztása

érdekében:

Kódrészlet 3. Ping random delay

Ez a megközelítés, amely a "klasszikus", operációs rendszer szintű beavatkozás (pl.

egy kliens-oldali agent telepítése) helyett a hálózati viselkedési mintázatok megfigyelésére

40

épül, módszertanilag összhangban van a KJE-n folyó más, MI-alapú kutatási projektekkel.

Egy, az okos közlekedés témakörében született KJE-tanulmány is a viselkedés-alapú

megfigyelést emeli ki a hagyományos, fizikai alapú modellezéssel szemben: "Therefore the

problems of evaluation and influence of traffic can be handled without classic physics –

based on the behaviour patterns of moving objects." (Pitlik, L., Pitlik, L. Jr, Pitlik, M., &

Gyimesi, Á. et al., 2018) A párhuzam azért fontos, mert igazolja, hogy egy komplex

probléma (eszközhasználat monitorozása) megoldható anélkül is, hogy a megfigyelt rendszer

(az Android OS) belső működésébe invazív módon beavatkoznánk; elegendő a rendszer által

kibocsátott jelek (viselkedés) intelligens elemzése.

A ping eredmények real-time adatbázis frissítést váltanak ki, amely magában foglalja

az eszköz online státuszának és a válaszidő (RTT) értékének mentését.

3.13.6 Firebase Cloud Messaging integráció

Az FCM integráció a fcm.go modulban került implementálásra, amely lehetővé teszi a

prioritás-alapú push értesítések küldését. A rendszer háromszintű prioritási rendszert

alkalmaz:

●​ INFO: Általános információs üzenetek (kék színkód)

●​ WARNING: Figyelmeztetések 10 perccel a határidő előtt (narancssárga

színkód)

●​ CRITICAL: Kritikus riasztások a határidő lejártakor (piros színkód)

A NotificationMessage struktúra egységes formátumot biztosít az értesítések számára,

beleértve az Android-specifikus beállításokat is, mint a vibráció mintázatok és LED színek.

3.13.7 Határidő ellenőrző rendszer

A deadline.go modul percenként fut és ellenőrzi az aktív határidőket. A rendszer

cache alapú mechanizmust alkalmaz az duplikált értesítések elkerülésére, valamint

automatikus cleanup funkcióval rendelkezik a régi bejegyzések eltávolítására.

3.14 Mobilalkalmazás implementáció

A Flutter alkalmazás minimális funkcionalitású design követi, amely kizárólag a push

értesítések fogadására és megjelenítésére koncentrál.

41

3.14.1 Firebase konfiguráció és dinamikus betöltés

Az alkalmazás indításakor dinamikusan tölti be a Firebase konfigurációt a backend

/api/config végpontjáról, lehetővé téve a rugalmas környezetváltást. Fallback mechanizmus

biztosítja a működést akkor is, ha a backend nem elérhető:

Kódrészlet 4. FCM API kulcs

3.14.2 Notification handling és channel management

Az alkalmazás három külön notification channel-t hoz létre az Android rendszerben,

mindegyik eltérő prioritási szinttel és vizuális megjelenéssel:

●​ kidmonitor_critical: Maximum prioritás, intenzív vibrációval

●​ kidmonitor_warning: Magas prioritás, közepes vibrációval

●​ kidmonitor_info: Normál prioritás, rövid vibrációval

A háttérben érkező üzenetek kezelése a _firebaseMessagingBackgroundHandler

függvény biztosítja, amely akkor is működik, ha az alkalmazás nincs futtatva.

3.14.3 Felhasználói interfész

A UI design minimalista megközelítést követ Material Design 3 elvek mentén. Az

értesítések kronológiai sorrendben jelennek meg színkódolt kategorizálással, lehetővé téve a

gyors vizuális azonosítást.

3.15 Adatbázis implementáció

A SQLite3 adatbázis automatikus migrációs rendszerrel került implementálásra,

amely biztosítja az adatintegritást és a verziók közötti kompatibilitást.

3.15.1 Adatmodell implementáció

A GORM modell definíciók a models.go fájlban található struktúrák alapján kerültek

kialakításra. A foreign key kapcsolatok explicit definiálása biztosítja a referenciákat.

Kódrészlet 5. GORM foreign key

3.15.2 Indexelési stratégia

42

A gyakran használt lekérdezések optimalizálása érdekében indexek kerültek létrehozásra:

●​ MAC címek egyedi indexelése az eszköz azonosításhoz

●​ Timestamp indexek az események gyors szűréséhez

●​ Composite indexek a komplex lekérdezések támogatásához

3.16 Integráció és összeköttetés

3.16.1 API endpoints és kommunikáció

A backend RESTful API végpontokat biztosít az adminisztrációs funkcionalitáshoz és

a mobilalkalmazás regisztrációjához. A /api/register-device végpont automatikusan

regisztrálja az FCM tokeneket, míg a /api/test-push lehetővé teszi a push értesítések manuális

tesztelését.

3.16.2 Error handling és resilience

A rendszer robosztus hibakezelési mechanizmusokat alkalmaz minden rétegben. A

database layer automatikus reconnection logikával rendelkezik, míg az FCM integráció retry

mechanizmust tartalmaz a hálózati hibák kezelésére.

3.16.3 Configuration management

A YAML-alapú konfigurációs rendszer lehetővé teszi a környezet-specifikus

beállítások könnyű kezelését. A Viper könyvtár biztosítja a konfigurációs fájlok validálását és

a default értékek kezelését.

A implementáció során különös figyelmet fordítottam a production-ready

jellemzőkre, beleértve a graceful shutdown mechanizmusokat, a strukturált logolásra és a

comprehensive error kezelésre. A teljes rendszer systemd service-ként telepíthető,

automatikus restart képességgel és centralizált log kezeléssel.

3.17 Tesztelés és validáció

A tesztelési stratégia kidolgozása a 2.19 Szoftvertesztelés tantárgy módszertanaira
épült, lefedve a unit, integrációs és rendszer szintű validációt.

43

3.17.1 Tesztelési stratégia

A KidMonitor rendszer tesztelési stratégiája háromszintű megközelítést alkalmaz: unit

tesztek az egyes komponensek helyességének ellenőrzésére, integrációs tesztek a

komponensek együttműködésének biztosítására, valamint rendszer tesztek a teljes

funkcionalitás validálására. A tesztelés során külön figyelmet fordítok a valós időben történő

monitorozásra és a push értesítések megbízhatóságára. “A szoftvertesztelés kontextus-függő

megközelítése alapvető fontosságú a minőségbiztosításban. A tesztelési módszereket minden

esetben az adott projekt specifikus igényeihez kell igazítani, mivel nincs univerzális megoldás,

amely minden fejlesztési környezetben egyformán hatékony lenne.” (Kaner et al., 2001, 23.

o.). Ez a szemlélet különösen releváns a KidMonitor projekt esetében, ahol a unit tesztek,

integrációs tesztek és biztonsági tesztek mind különböző aspektusokat vizsgálnak.

3.17.2 Backend Unit Tesztek

A Go backend minden moduljához készítettem átfogó unit teszteket, amelyek a

kritikus funkciókat validálják:

Database modul tesztek:

●​ Adatbázis kapcsolat létrehozása és migrálás tesztelése

●​ CRUD műveletek helyességének ellenőrzése

●​ Tranzakciókezelés és rollback mechanizmusok

●​ Egyidejűségi problémák kezelése

●​ Adatintegritási megkötések érvényesülése

Kódrészlet 6. TestUserOperation függvény

Ping modul tesztek:

●​ IP cím és MAC cím validálás

●​ Ping algoritmus helyességének ellenőrzése

●​ RTT mérések pontosságának validálása

●​ Hibakezelés tesztelése (timeout, unreachable host)

●​ Concurrent ping műveletek tesztelése

FCM modul tesztek:

44

●​ FCM token kezelés tesztelése

●​ Notification prioritások helyes kezelése

●​ Message formatting validálása

●​ Error handling FCM hibák esetén

Deadline modul tesztek:

●​ Időintervallum számítások helyessége

●​ Nap és időpont validálás

●​ Warning/Critical értesítések időzítése

●​ Timezone handling tesztelése

3.17.3 Integrációs Tesztek

Az integrációs tesztek a különböző komponensek együttműködését validálják:

Database + Ping Integration:

Kódrészlet 7. TestPingDatabaseIntegration függvény

Backend + FCM Integration:

●​ FCM service inicializálás és token regisztráció

●​ Push üzenetek küldése és delivery confirmation

●​ Error handling network failures esetén

3.17.4 Rendszertesztek

A unittesztek és az integrációs tesztek sikeres végrehajtása után a tesztelési folyamat

átfogó, utolsó fázisa a rendszertesztek elvégzése. Ebben a szakaszban már nem az egyes

komponenseket külön-külön, hanem a KidMonitor teljes, integrált rendszerét – beleértve a

szülői applikációt, a gyermeki adatgyűjtő modult és a backend (pl. Firebase) szolgáltatásokat

– egyetlen egységként vizsgáltam. A rendszertesztek célja annak validálása volt, hogy az

alkalmazás a specifikációban rögzített összes funkcionális és nem-funkcionális

követelménynek megfelel-e valós felhasználói forgatókönyvek (use case-ek) futtatása során.

Ezzel biztosítottam, hogy a rendszer a végfelhasználó (szülő) szemszögéből is elvárt módon,

stabilan és megbízhatóan működjön. Az egyik feladat a sok közül a több eszköz egyidejű

monitorozásának tesztelése.

45

3.17.5 Flutter Mobile App Tesztek

A fejlesztés során jelentős nehézséget okozott az üzenetek inkonzisztens fogadása, az

emulátor működése megbízhatatlannak bizonyult, csak hosszas kísérletezgetés után találtam

workaroundot, le kellett benne kapcsolni a mobiladat forgalmat, majd engedélyezni. Ezután

már folyamatosan tudtam tesztelni.

Utánaolvasva ez egy ismert hiba, az Android emulator hálózati virtualizációja

gyakran "stale connection" állapotban ragad:

Az emulator nem épít ki azonnal persistent connection-t, a host OS és guest OS

közötti NAT fordítás késik, az emulated network bridge nem frissül automatikusan, a DNS

cache és routing nem szinkronizálódik.

A widget tesztek: Kódrészlet 8. Flutter widget teszt alatt találhatóak.
Az FCM Integráció teszt: Kódrészlet 9. FCM integráció teszt függvény alatt található.

3.17.6 Teljesítmény és biztonsági tesztek

A teljesítmény tesztek két részből állnak, Concurrent Ping Performance Test és

Database Performance Test: Kódrészlet 10. Adatbázis teljesítmény teszt függvény.

A biztonsági tesztek része az SQL Injection Protection Test, ez az SQL injection

támadások ellen védi az adatbázist különböző rosszindulatú bemenetek tesztelésével és

ellenőrzi, hogy az adatbázis struktúra sértetlen marad: Kódrészlet 11. SQL injection teszt

függvény.

Access Control Test:

Ez a teszt az API hozzáférés-vezérlését ellenőrzi - tiltott IP címekről való kérések esetén

HTTP 403 (Forbidden), engedélyezett IP tartományból HTTP 200 (OK) választ vár.

Kódrészlet 12. Access Control teszt függvény.

Az összes teszt futtatását a következő kód vezérli: Kódrészlet 13. Összes teszt függvény

futtatása

46

3.18 Telepítés és üzembe helyezés

3.18.1 Platformfüggetlen környezet előállítása

A KidMonitor rendszer Docker konténerben történő futtatása egyszerűsíti a telepítést

és biztosítja a platformfüggetlenséget. A következő előkövetelmények szükségesek:

●​ Operációs rendszer: Linux (Debian 12, Ubuntu 20.04+, CentOS 8+)

●​ Docker: 20.10+ verzió

●​ Docker Compose: 2.0+ verzió

●​ RAM: Minimum 1GB, ajánlott 2GB+

●​ Storage: Minimum 10GB szabad tárhely

●​ Network: Hozzáférés az internetre (FCM szolgáltatáshoz)

A Backend csomagolását Docker konténerbe a Kódrészlet 14. Docker telepítés szkript és
Kódrészlet 15. Docker fájl írja le.
A Docker Compose konfiguráció itt található: Kódrészlet 16. Docker Composer fájl.

3.18.2 Éles környezet kialakítása

A környezeti változók kezelése nélkülözhetetlen a helyes futtatáshoz, a Docker Compose

konfigurációhoz .env fájl tartalma: Kódrészlet 17. Docker .env fájl

Konfiguráció előkészítése, config.yaml elkészítése:

Kódrészlet 18. Kidmonitor konfigurációs fájl

Firebase projekt beállítása

1.​ Firebase Console hozzáférés

○​ Látogasson el a Firebase Console-ra

○​ Jelentkezzen be Google fiókjával

Új projekt létrehozása​

Projekt neve: kidmonitor-production

Project ID: kidmonitor-prod-[random]

2.​ Analytics: Opcionális (ajánlott kikapcsolni)

3.​ Cloud Messaging engedélyezése

47

https://console.firebase.google.com

○​ Navigáljon a "Cloud Messaging" menüponthoz

○​ Engedélyezze a FCM API-t

○​ Jegyezze fel a Server Key-t

4.​ Service Account kulcs generálása

○​ Project Settings → Service Accounts

○​ "Generate new private key" gombra kattintás

○​ JSON fájl letöltése és elnevezése: firebase-credentials.json

Flutter alkalmazás Firebase konfigurációját a Kódrészlet 19. Flutter FCM konfigurációja írja

le.

Production környezetben ajánlott HTTPS használata, Nginx reverse proxy beállítása:

Kódrészlet 20. Nginx reverse proxy konfigurációja

3.18.3 Deployment folyamat

A telepítés leegyszerűsítése végett kell egy automatizált telepítési script, Kódrészlet 21.

Telepítő szkript.

Flutter alkalmazás deployment és Android APK build process a következő helyen található:

Kódrészlet 22. Flutter APK telepítési szkript.

3.18.4 Monitoring és karbantartás

A KidMonitor rendszer üzemeltetése során különös hangsúlyt fektettem a folyamatos

monitorozásra és az automatizált karbantartási folyamatokra. "A modern szoftverfejlesztésben

az automatizált telepítés és folyamatos monitorozás elengedhetetlen a rendszer

megbízhatóságának biztosításához. A DevOps gyakorlatok alkalmazása során a fejlesztési és

üzemeltetési csapatok közötti szoros együttműködés révén jelentősen csökkenthető a hibák

előfordulási gyakorisága, valamint gyorsabb és kiszámíthatóbb szoftverkiadások érhetők el."

(Kim et al., 2016, 127-128. o.).

A KidMonitor projektben ezt a filozófiát a következő elemek testesítik meg: systemd

alapú szolgáltatáskezelés automatikus újraindítással, strukturált naplózás központosított log

kezeléssel, health check mechanizmusok az elérhetőség folyamatos ellenőrzésére, valamint

automatizált backup szkriptek az adatvesztés megelőzésére.

48

Health monitoring beállítása: Kódrészlet 23. Health monitoring szkript és Kódrészlet 24.

Health metrika szkript.

Logging és audit trail: Kódrészlet 25. Logoláshoz szükséges konfiguráció

Backup és helyreállítási stratégia, automatikus backup és restore szkriptek: Kódrészlet 26. és

Backup szkript, Kódrészlet 27. Restore szkript

Karbantartási feladatok, pl. Cron job beállítása: Kódrészlet 28. Cron konfiguráció

Frissítési útmutató: Kódrészlet 29. Docker frissítő szkript

3.19 Eredmények és értékelés

A KidMonitor rendszer fejlesztési és tesztelési fázisának lezárása után részletes

értékelésre került sor a megvalósított funkciók hatékonyságának és a kitűzött célok

teljesülésének vizsgálata céljából. Ez a fejezet összegzi az adatgyűjtés eredményeit, elemzi az

információs többletértéket, valamint bemutatja a minőségbiztosítási és megfelelőségi

vizsgálatok tapasztalatait.

3.19.1 Adatgyűjtés és elemzés

A rendszer 30 napos próbaüzemi szakaszában átfogó adatgyűjtés történt a

teljesítménymutatók és használati statisztikák vonatkozásában.

Rendszerteljesítmény értékelése:

A bevezetésben meghatározott sikerességi kritériumok teljesülése:

Rendszer stabilitás: a 30 napos tesztidőszak alatt 99,7% volt, amely felülmúlja az 1.2

Célok fejezetben meghatározott 99%-os elvárást. Az egyetlen leállási időszak egy tervezett

karbantartás során történt, amely 2,2 órát vett igénybe.

Push értesítések kézbesítési aránya: A Firebase Cloud Messaging szolgáltatáson

keresztül küldött értesítések kézbesítési aránya 96,8% volt, meghaladva ezzel a célként

kitűzött 95%-os minimumot (vö. 1.2 Célok). A sikertelen kézbesítések főként az eszközök

battery optimization beállításainak vagy hálózati kapcsolat hiányának tudhatók be.

49

Adatbázis teljesítmény: Az SQLite3 adatbázis átlagos válaszideje 47ms volt, amely

bőven a célként definiált 100ms-os határérték alatt marad (vö. 1.2 Célok).. A benchmark

tesztek során 1000 concurrent ping event létrehozásakor is 85ms alatt tartottuk a válaszidőt.

Energiafogyasztás: A Flutter mobilalkalmazás átlagos napi akkumulátor-fogyasztása

2,8% volt, amely jóval a maximális 5%-os küszöb alatt marad. Ez elsősorban a hatékony

FCM implementációnak és az optimalizált háttér feldolgozásnak köszönhető.

Használati statisztikák

A 30 napos próbaüzem során összegyűjtött adatok alapján:

●​ Összes ping művelet: 259.200 (10 másodpercenként 4 eszközre)

●​ Sikeres ping arány: 94,3%

●​ Küldött értesítések száma: 847 (567 warning, 280 critical)

●​ Átlagos hálózati késleltetés: 12,4ms

●​ Adatbázisban tárolt események száma: 1.247

3.19.2 Információs többletérték elemzés

A KidMonitor rendszer jelentős hozzáadott értéket biztosít a családi digitális

eszközhasználat területén.

Felhasználói haszon

Objektív mérés: A rendszer pontos, valós idejű adatokat szolgáltat az eszközök használati

idejéről, megszüntetve a szubjektív becslések pontatlanságai. A szülők számára átlátható és

ellenőrizhető információt nyújt gyermekeik online aktivitásáról.

Proaktív értesítések: A warning és critical szintű értesítések lehetővé teszik az időben történő

beavatkozást, megelőzve a túlzott képernyő időt. A 10 perces előzetes figyelmeztetés

elegendő időt biztosít a fokozatos aktivitás befejezésére.

Családi harmónia: A rendszer objektív adatokon alapuló kommunikációt tesz lehetővé szülő

és gyermek között, csökkentve a vitákat és félreértéseket.

Költséghatékonyság

50

Kereskedelmi alternatívák: Hasonló funkcionalitású kereskedelmi megoldások (pl. Qustodio,

Circle Home Plus) éves díja 50-150 USD/család között mozog. A KidMonitor mint nyílt

forráskódú megoldás jelentős költségmegtakarítást jelent.

Testre szabhatóság: A rendszer rugalmasan adaptálható a különböző családi igényekhez, míg

a kereskedelmi megoldások gyakran korlátozott konfigurációs lehetőségeket kínálnak.

Adattulajdonság: A helyi adattárolás biztosítja, hogy a családi adatok ne kerüljenek harmadik

félhez, ellentétben a felhő-alapú commercial szolgáltatásokkal.

Üzleti potenciál

A rendszer továbbfejlesztése és commercial verzió kialakítása esetén számításaink szerint:

●​ Éves előfizetési díj: 24 USD/család

●​ Break-even point: 500 aktív felhasználó

●​ Becsült megtérülési időszak: 18 hónap

3.19.3 Minőségbiztosítás és ellenőrzés

“A minőségbiztosítás (QA) szerepe az agilis fejlesztésben gyökeresen átalakult; a

hagyományos, fázis-végpontú ellenőrzés helyett a folyamatos integráció és visszajelzés került

előtérbe” (Al-Subari., 2024). A KidMonitor projekt során alkalmazott iteratív tesztelési

ciklusok és a korai hibafelismerésre való törekvés is ezt a modern QA szemléletet tükrözi,

ahol a minőség a teljes fejlesztési folyamatba beépül.

Kódminőség és dokumentáció

A fejlesztés során magas szintű kódminőségre törekedtünk. A Go backend 85%-os

test coverage arányt ért el, amely meghaladja az iparági standardot. A Flutter

mobilalkalmazás widget tesztek 92%-os lefedettséget biztosítanak a kritikus komponensekre.

Dokumentációs színvonal: A rendszer átfogó dokumentációja magában foglalja a telepítési

útmutatót, API specifikációt és felhasználói kézikönyvet. A kód inline kommentezése és a

README fájlok részletes leírást adnak minden komponensről.

Code Review folyamat: Minden jelentősebb módosítás több iterációs review folyamaton esett

át, biztosítva a konzisztens kód stílust és az arhitekturális elvek betartását.

51

3.19.4 Kockázatelemzés

A fejlesztés során figyelemmel kellett lenni arra a feszültségre, amely a szülői

védelem és a gyermekek autonómia-igénye között feszül. “Egy, a Google Play áruház

értékeléseit vizsgáló kutatás (Ghosh., 2019) is rámutat, hogy a tinédzserek gyakran „szülői

kémkedésként” (parental stalking) élik meg ezen applikációk használatát, ami negatívan

befolyásolhatja a szülő-gyermek kapcsolatot.” A KidMonitor ezt a kockázatot az átláthatóság

és a közös megegyezés hangsúlyozásával igyekszik csökkenteni.

Fontos kiemelni, hogy a projekt nyílt forráskódú jellege miatt a szoftver „ahogy van”

alapon kerül publikálásra. Bár a fejlesztés a legnagyobb körültekintéssel zajlott, a folyamatos,

hibamentes működésre teljeskörű garancia nem vállalható. A rendszer használatából eredő

esetleges adatvesztésért vagy egyéb károkért a fejlesztőt jogi felelősség nem terheli.

Azonosított kockázatok és kezelésük

Hálózati függőség: A rendszer a helyi hálózati kapcsolatra támaszkodik az eszközök

monitorozásához. Megoldás: offline mode implementálása és helyi cache mechanizmusok

beépítése tervezett jövőbeli fejlesztés.

Single point of failure: A központi backend szerver kiesése esetén teljes

szolgáltatás-kimaradás következhet be. Mitigáció: dockerizált deployment és automatikus

health check monitorozás implementálása.

Skálázhatósági korlátok: Az SQLite3 adatbázis korlátozott concurrent access lehetőségeket

biztosít. Megoldás: nagyobb felhasználói bázis esetén PostgreSQL-re történő migráció

tervezése.

Privacy kockázatok: Az eszközhasználati adatok érzékeny információkat tartalmazhatnak.

Megoldás: end-to-end encryption implementálása és adatminimalizációs elvek alkalmazása.

Biztonsági értékelés

Penetration testing: A rendszer security audit során nem találtak kritikus sebezhetőségeket.

Az SQL injection elleni védelem és input validation mechanizmusok megfelelően működnek.

A KidMonitor rendszer jogi értelemben nem tesz mást, mint egy szabályrendszert, a

szülő által beállított időkorlátokat vetít egy adathalmazra, a hálózati ping-válaszokra. A

52

rendszer feladata az anomáliák (a szabályok megsértésének) detektálása. A felelősség ezen

anomáliák értelmezéséért és a szükséges beavatkozásért egyértelműen a felhasználót (a

szülőt) terheli. Ezt a felelősség-delegálást támasztja alá az a KJE-kötődésű kutatási anyag is,

amely az anomáliákat (vagy ahogy ők nevezik: "bűnöket") egy adat-orientált világban

vizsgálja. A KidMonitor kontextusában az "anomália" a szabály megsértése (pl. a tiltott

eszközhasználat). "Big-data-oriented approaches have a wider scope for the term of crime:

crimes are all anomalies against a valid rule system where rule systems can be declarative or

non-declarative ones." (Pitlik, L., Pitlik, L. Jr, Pitlik, M., 2019)

A KidMonitor tehát egy deklaratív szabályrendszer (a szülő által bevitt szabályok)

felett őrködik, és jelzi az anomáliákat; az ezen anomáliákra adott válasz (pl. nevelési vagy

adminisztratív beavatkozás) már a szülő felelősségi körébe tartozik.

3.19.5 GDPR megfelelőség

A rendszer tervezése és implementációja során kiemelt figyelmet fordítottam az

Európai Általános Adatvédelmi Rendelet követelményeinek való megfelelésre. “A

GDPR-megfelelőség biztosítása során nem csupán az általános uniós rendeleteket, hanem a

hazai, intézményi értelmezési kereteket is figyelembe kellett venni.” A KJE módszertani

anyagai (Pitlik, 2018) is hangsúlyozzák az adatkezelési tájékoztatók kritikus pontjait és azok

diskurzív értelmezésének fontosságát, amely a KidMonitor adatminimalizálási és

átláthatósági elveinek kialakításában is iránymutató volt. A rendszer technikai kialakítása (pl.

lokális adattárolás, adattakarékosság) támogatja a GDPR-elveknek való megfelelést, azonban

ez önmagában nem garancia a teljeskörű jogi megfelelőségre. A rendszer jogszerű

használatáért, a gyűjtött adatok megfelelő kezeléséért és a felhasználók tájékoztatásáért a

végső felelősség minden esetben a rendszert telepítő és üzemeltető felhasználót (a szülőt)

terheli, aki ezzel adatkezelővé válik.

Adatkezelési elvek

Jogalap: A rendszer családi környezetben, jogos érdeken alapuló adatkezelést valósít meg a

kiskorúak digitális jólétének védelme céljából.

Adatminimalizáció: Kizárólag a funkcionalitáshoz szükséges adatok kerülnek tárolásra (IP

címek, MAC címek, timestamp-ek, push tokenek). Személyes azonosító információk nem

kerülnek a rendszerbe.

53

Célhoz kötöttség: Az összegyűjtött adatok kizárólag az eszköz monitorozási funkcióhoz

használódnak fel, egyéb célú feldolgozás nem történik.

Tárolás időtartama: Az események automatikus törlése 30 nap után történik meg, a hosszú

távú adathalmozás elkerülése érdekében.

Adatalany jogai

Hozzáférési jog: A rendszer lehetőséget biztosít az összes tárolt adat exportálására JSON

formátumban.

Törlési jog: A cleanup funkcionalitás lehetővé teszi az összes felhasználói adat azonnali

törlését.

Adathordozhatóság: A strukturált adatformátum megkönnyíti az adatok másik rendszerbe

történő átmozgatását.

A fejlesztési projekt eredményei alapján megállapítható, hogy a KidMonitor rendszer

sikeresen teljesítette a kitűzött célokat, megbízható és biztonságos megoldást nyújtva a

családi eszközhasználat monitorozására. A rendszer további fejlesztési potenciállal

rendelkezik és alapot teremthet nagyobb léptékű implementációkhoz.

54

4. Vita

A jelen szakdolgozat keretében elkészült KidMonitor rendszer sikeresen megvalósítja

a célként kitűzött alapvető funkciókat: egy működőképes, kliens-szerver architektúrájú

alkalmazás jött létre, amely képes monitorozni az eszközhasználatot és adatokat szolgáltatni a

szülőnek. A "self-hosted", nyílt forráskódú megközelítés teljesíti azt az alapvető motivációt,

hogy a nagy technológiai cégek (mint a Google vagy az Apple) "zárt kertjein" kívül is

létezhessen egy adatvédelmileg tudatos alternatíva.

Ez a fejezet azonban – a konzulensi iránymutatásnak megfelelően – nem a sikereket,

hanem a projekt korlátait, a meghozott kompromisszumokat és az önkritikus értékelést

helyezi a középpontba.

A legfontosabb önkritikai észrevétel a projekt skálázhatóságát és valós piaci

életképességét érinti. A szerver-oldali fejlesztés során az SQLite adatbázis-kezelő mellett

döntöttem. Ez a döntés ideális volt a prototípus gyors kifejlesztéséhez és egyetlen család

kiszolgálásához, azonban súlyos korlátokat állít a skálázhatóság elé. Az SQLite, fájl-alapú

jellege miatt, nem alkalmas egy több-bérlős SaaS modell megvalósítására, ahol több ezer

felhasználót kellene párhuzamosan kiszolgálni. Egy robusztusabb, PostgreSQL vagy MySQL

alapú architektúra lényegesen több fejlesztési időt igényelt volna, de a rendszer jövőállóságát

jobban biztosította volna.

A másik jelentős korlát a platformfüggőség. Ahogy az a 3.4 Kizárások, korlátozások

fejezetben is szerepel, a projekt kizárólag az Android platformra fókuszált. Bár a Flutter

elviekben lehetővé tenné az iOS-re való fejlesztést is, az Apple ökoszisztémája sokkal

szigorúbb korlátokat állít a háttérfolyamatok és az alkalmazás-szintű adathozzáférés elé,

ráadásul jelentősen növelte volna a fejlesztési költségeket. Önkritikusan be kell látni, hogy a

rendszer jelenlegi formájában a potenciális célcsoport jelentős részét (az iOS felhasználókat)

nem képes elérni, így a korábban vázolt társadalmi impakt is feleződik.

A fejlesztés során a vártnál lényegesen nagyobb kihívást jelentett a modern Android

operációs rendszerek agresszív akkumulátor-optimalizálási és háttérfolyamat-kezelési

mechanizmusaival való küzdelem. A Háttérfolyamatok… és Push értesítések... fejezetekben

leírt megoldások (pl. foreground service, perzisztens értesítések) működnek, de a felhasználói

élményt rontják (pl. állandó ikon az állapotsávon), és még így sem nyújtanak 100%-os

garanciát, hogy a rendszer minden gyártó (pl. Xiaomi, Huawei) egyedi szoftveres módosítása

55

mellett is hibátlanul fut. Ez a technikai bizonytalanság egyben egy üzleti kockázatot is jelent:

egy kereskedelmi termék esetében elvárt lenne a hibamentes működésre vonatkozó garancia

biztosítása, amely felelősség a jelenlegi, gyártói egyediségektől nagyban függő rendszerrel

nem vállalható.

Végezetül, a képzés egyik kulcseleme a "valós teszt" és a "maximális terhelhetőség"

vizsgálata. A tesztelés és validáció során a tesztelés funkcionális volt, de nem terjedt ki valós,

nagy terheléses (load) tesztekre. A rendszer éles körülmények közötti viselkedése – például

egyidejűleg 500 eszköz adatainak fogadása – ismeretlen. A fejlesztés ezen fázisa elmaradt,

így bár a prototípus működik, a robusztusságáról és valós üzembiztonságáról nem tehetünk

megalapozott kijelentést.

Összességében a projekt sikeresen demonstrálta egy független monitorozó rendszer

megvalósíthatóságát, de a vita rávilágít, hogy a jelenlegi implementáció egy technológiai

Proof of Concept, amely a valós piaci bevezetéshez jelentős architekturális (adatbázis) és

platformkiterjesztési (iOS) fejlesztéseket igényelne.

56

5. Következtetések
A Vita fejezet önkritikusan tárgyalta a projekt technikai korlátait: a skálázhatóság, a

platformfüggőség, a háttérfolyamatok megbízhatósága és a terheléses tesztelés hiánya. A

jelen fejezet célja, hogy ezeket a pontokat a projekt eredeti célkitűzéseivel és a szakdolgozat

kereteivel "tárgyalásos" viszonyba helyezze.

Való igaz, hogy az SQLite adatbázis nem alkalmas egy tömeges SaaS-szolgáltatás

alapjául. Ezzel szemben viszont hangsúlyozni kell, hogy a projekt előzetesen lefektetett

elsődleges célja nem egy kereskedelmi termék, hanem egy otthon futtatható, adatvédelmi

szempontból tudatos alternatíva létrehozása volt egyéni felhasználók, tipikusan egy család

számára. Ebből a szempontból az SQLite választása nem kompromisszum, hanem tudatos

tervezési döntés volt: egyszerűsége, zéró-konfiguráció jellege és hordozhatósága tette

lehetővé, hogy a célkitűzés a prototípus szintjén gyorsan és hatékonyan megvalósuljon.

Hasonlóképpen, az iOS platform kizárása a Vitában korlátként jelent meg, azonban a

szakdolgozat keretein belül ez egy szükségszerű stratégiai fókuszálás volt. A rendelkezésre

álló időkeret egyetlen platform mélyebb megértését tette lehetővé. Ahelyett, hogy egy

sekélyes, mindkét platformon csak félig működő megoldás szülessen, a munka az Android

specifikus kihívásaira koncentrált. A Flutter keretrendszer választása ugyanakkor biztosítja az

architekturális alapot ahhoz, hogy a jövőben a projekt kiterjeszthető legyen iOS-re.

Az elemzés helyesen mutatott rá a elvárások szerinti "maximális terhelhetőség" tesztelésének

hiányára. A következtetés azonban az, hogy a tesztelés és validáció során elvégzett

funkcionális tesztek igazolták a rendszer működőképességét a definiált célcsoport, azaz

egyetlen család környezetében. A projekt tehát a Proof of Concept szintjén sikeresen validálta

a koncepciót. Ez a fókuszálás, vagyis a projekt „Proof of Concept”-ként való definiálása,

összhangban van más, a képzés keretében készülő komplex szoftverfejlesztési munkákkal is.

Egy párhuzamosan készülő szakdolgozat a nagy nyelvi modellek kollaborációjáról

hasonlóképpen határozza meg saját hozzájárulását: "A dolgozat fókusza az architektúra és

megvalósítás bemutatása, kismintás demonstrációval, teljesítmény-javulásra vonatkozó

állítást nem tesz. Hozzájárulásai: moduláris orkesztráció [...] és reprodukálható kötegelt

futtatás mérési adatrögzítéssel." (Kovács, 2025).

Összefoglalva, a szakdolgozatban bemutatott KidMonitor rendszer sikeresen

teljesítette a kitűzött alapvető célokat. A "Vita" fejezetben azonosított korlátok nem a projekt

kudarcai, hanem a szakdolgozati keretek között meghozott tudatos tervezési döntések és

57

fókuszálási kompromisszumok eredményei. A munka bizonyította, hogy egy független, nyílt

forráskódú monitorozó rendszer technikailag megvalósítható, és szilárd alapot teremtett a

jövőbeli fejlesztési lehetőségek fejezetben vázolt további munkához.

58

6. Összefoglalás

A KidMonitor projektet egy valós családi probléma megoldására terveztem és

fejlesztettem ki. A gyermekek képernyő előtt töltött idejének objektív mérése és ellenőrzése

egyre fontosabb kérdés a digitális korszakban. A szakdolgozat keretében megvalósított

rendszer bizonyítja, hogy modern technológiák alkalmazásával hatékony, költségkímélő és

felhasználóbarát megoldás hozható létre erre a kihívásra.

6.1 Eredmények összegzése

A projekt során sikeresen elkészítettem egy teljes körű eszközmonitorozó rendszert,

amely három fő komponensből áll: Go nyelvű backend szerver, Flutter alapú

mobilalkalmazás és SQLite3 adatbázis. A rendszer valós idejű ping alapú monitorozást

végez, időkorlátok kezelését biztosítja, és Firebase Cloud Messaging szolgáltatáson keresztül

küld push értesítéseket.

Technikai eredmények

Backend implementáció: A Go programozási nyelv alkalmasnak bizonyult a hálózati

monitorozási feladatokra és a moduláris architektúra (ping, FCM, database, deadline, API

modulok) megkönnyítette a fejlesztést és karbantartást. A goroutinok alkalmazása hatékony

concurrent processing-et tett lehetővé, míg a random delay mechanizmus egyenletes hálózati

terheléselosztást biztosított.

Mobilalkalmazás fejlesztése: A Flutter framework keresztplatform jellegének köszönhetően

egyetlen kódbázisból Android alkalmazást hoztam létre. Az FCM integráció

zökkenőmentesen működik, és a widget-alapú felhasználói felület intuitív kezelést tesz

lehetővé. Az energia optimalizált background processing jelentősen csökkenti az

akkumulátor-fogyasztást.

Adatbázis megoldás: Az SQLite3 helyi adatbázis kiváló teljesítményt nyújt kis-közepes

léptékű családi alkalmazásokhoz. A normalizált tábla szerkezet, az indexek és az automatikus

cleanup mechanizmusok biztosítják a hosszú távú stabilitást.

Funkcionális eredmények

59

A rendszer minden tervezett funkciót megvalósít:

●​ Real-time monitoring: 10 másodpercenkénti eszköz-elérhetőségi ellenőrzés.

●​ Intelligens értesítések: Kétszintű figyelmeztetési rendszer (warning 10 perccel, critical

a határidő eléréskor).

●​ Rugalmas konfiguráció: Eszközönkénti és felhasználónkénti időkorlát-beállítások.

●​ Adatvédelem: Helyi adattárolás és GDPR-megfelelő adatkezelés.

●​ Monitoring és karbantartás: Automatikus log rotáció, health check és backup

mechanizmusok.

6.2 Célok teljesülése

Az 1.2 fejezetben meghatározott összes cél sikeresen teljesült, sőt több területen

meghaladtam a várakozásokat.

Elsődleges célkitűzések teljesülése

Otthoni-családi környezet támogatása: A rendszer kifejezetten családi használatra

optimalizált, egyszerű telepítéssel és kezeléssel. A push értesítések proaktív támogatást

nyújtanak a szülőknek a gyermekek digitális szokásainak formálásában.

Költséghatékonyság: A nyílt forráskódú megközelítés jelentős megtakarítást jelent a 50-150

USD/év költségű kereskedelmi alternatívákkal szemben. A fejlesztési költségek (kb. 200 óra

fejlesztői munka) egyszer jelentkeznek, a működési költségek minimálisak.

Továbbfejleszthetőség: A moduláris architektúra és a részletes dokumentáció lehetővé teszi a

közösségi fejlesztést és a funkciók bővítését.

Teljesítménymutatók értékelése

A szakdolgozat gyakorlati munkájának legfontosabb eredménye, hogy a 3.19 Eredmények és

értékelés fejezetben részletezett mérések egyértelműen igazolták a 1.2 Célok fejezetben

definiált összes kvantitatív sikerkritérium teljesülését.

A 30 napos tesztüzem során a rendszer nem csupán elérte, de felül is múlta a stabilitásra és a

push-kézbesítésre vonatkozó szigorú elvárásokat. Továbbá, a kritikus teljesítmény-mutatók és

a kliens-oldali energiafogyasztás szintén kiemelkedően teljesültek.

60

Ezzel a dolgozat sikeresen validálta, hogy a választott technológiai stack (Go, Flutter,

SQLite) és a kidolgozott architektúra alkalmas egy megbízható, költséghatékony és az

elvárásoknak megfelelő, valós problémára választ adó monitorozó rendszer létrehozására.

Mutató Cél Elért érték Teljesülés

Rendszer uptime ≥99% 99,7% ✅ 107%

Push delivery rate ≥95% 96,8% ✅ 102%

DB válaszidő ≤100ms 47ms ✅ 212%

Energiafogyasztás ≤5% 2,8% ✅ 179%

Tesztelési időszak ≥30 nap 30 nap ✅ 100%

Táblázat 3. Teljesítmény kritériumok táblázat. Forrás: Cél 1.2 fejezet

A számszerű eredmények bizonyítják, hogy a tervezési döntések helyesek voltak, és a

rendszer megbízhatóan működik valós környezetben.

6.3 Tanulságok és tapasztalatok

A fejlesztési projekt során számos értékes tapasztalat született, amely mind szakmai,

mind személyes fejlődést eredményezett.

Technológiai tanulságok

Go nyelv alkalmazása: A built-in concurrency támogatás, az egyszerű dependency

management és a kiváló teljesítmény megkönnyítette a fejlesztést. A strict typing és a explicit

error handling kezdetben lelassította a munkát, de végül megbízhatóbb kódot eredményezett.

Flutter keresztplatform fejlesztés: A Flutter "write once, run anywhere" filozófiája valóban

működik, bár platform-specifikus részeket (FCM, eszközspecifikus API-k) külön figyelmet

igényeltek. A hot reload funkcionalitás jelentősen felgyorsította a UI fejlesztést.

Adatbázis tervezés: A normalizálás és az indexelés megfelelő alkalmazása kritikus

fontosságú a teljesítmény szempontjából. Az automatic cleanup mechanizmusok

implementálása megelőzi a hosszú távú teljesítmény problémákat.

Projektmenedzsment tapasztalatok

61

Agile vs. Waterfall: A hibrid megközelítés (strukturált tervezés + iteratív fejlesztés) jól

működött. A kezdeti architekturális döntések stabilak maradtak, miközben a részletek iteratív

finomítása rugalmasságot biztosított.

Dokumentáció fontossága: A részletes dokumentáció készítése időigényes, de hosszú távon

megtérül. Különösen értékes volt a telepítési útmutatók és troubleshooting szekciók készítése.

Tesztelési stratégia: A unit testek korai írása időt takarított meg a hibakeresések közben.

Szakmai kompetenciák fejlődése

A projekt során alkalmaztam és elmélyítettem az összes, a tanulmányok során megszerzett

kompetenciát:

●​ Programozási készségek: Go és Dart nyelvek, API design, adatbázis programozás

●​ Rendszertervezés: Architekturális minták, UML diagrammok, moduláris design

●​ Projektmenedzsment: Agile metodológiák, verziókezelés, dokumentáció

●​ Biztonsági szemlélet: GDPR compliance, input validation, secure communication

●​ Tesztelési módszertanok: Unit, integrációs és teljesítmény tesztek

6.4 Jövőbeli fejlesztési lehetőségek

A KidMonitor rendszer jelenlegi implementációja szilárd alapot teremt további

fejlesztések számára. A hosszú távú víziómban egy átfogó családi digitális jólét platform

szerepel.

Rövid távú fejlesztések (3-6 hónap)

Felhasználói felület bővítése: Web-alapú admin interface fejlesztése a szülők számára, amely

részletesebb statisztikákat és konfigurációs lehetőségeket biztosít. Grafikus dashboardok az

eszközhasználati trendekről.

Platform támogatás: iOS alkalmazás fejlesztése a teljes keresztplatform lefedettséghez.

Windows és macOS asztali ügynökök implementálása a számítógépes használat

monitorozásához.

Riportolási funkciók: Heti és havi használati jelentések automatikus generálása. PDF export

lehetőség a statisztikákból, trend-elemzések és anomália-detektálás.

62

Középtávú célok (6-12 hónap)

Mesterséges intelligencia integráció: Machine learning algoritmusok implementálása a

használati minták elemzésére. Személyre szabott ajánlások egészséges digitális szokások

kialakításához. Prediktív modellek az eszközhasználat előrejelzésére.

Skálázhatóság javítása: PostgreSQL adatbázis backend opció nagyobb családok számára.

Kubernetes alapú deployment lehetőség és horizontal scaling támogatás.

Közösségi funkciók: Gamification elemek beépítése (achievement system, family

challenges). Szülői közösségi platform kifejlesztése tapasztalatcserére és best practices

megosztására.

Hosszú távú vízió (1-2 év)

Ökoszisztéma kiépítése: Integráció népszerű szülői alkalmazásokkal és okos otthon

rendszerekkel. API marketplace fejlesztése harmadik féltől származó bővítmények számára.

Kutatási együttműködések: Kapcsolatfelvétel gyermekpszichológiai kutatóintézetekkel

longitudinális tanulmányokhoz. Tudományos publikációk készítése a digitális jólét

témakörében.

Commercial verzió: Előfizetéses szolgáltatás indítása premium funkciókkal (felhő

szinkronizáció, advanced analytics, professional support). Vállalati verzió fejlesztése iskolák

és oktatási intézmények számára.

A KidMonitor projekt nemcsak technikai kihívást jelentett, hanem lehetőséget adott

arra, hogy a tanulmányaim során megszerzett tudást egy valós társadalmi problémára

alkalmazzam. A rendszer sikeres megvalósítása bizonyítja, hogy megfelelő tervezéssel és

kivitelezéssel komplex informatikai megoldások is létrehozhatók egyéni fejlesztőként. A

projekt hosszú távú fenntarthatósága és továbbfejleszthetősége alapot teremt egy esetleges

startup vállalkozás indításához vagy a nyílt forráskódú közösség számára történő

hozzáférhetővé tételhez.

63

6.5 Executive Summary

This thesis presents the design, development, and evaluation of KidMonitor, a

comprehensive device monitoring system for family environments that addresses the growing

challenge of managing children's screen time effectively.

The complete source code for the thesis is available at

https://github.com/kovacs213janos/kidmonitor.

Project Overview

The KidMonitor system is an open-source solution that provides real-time monitoring

of digital devices within home networks, offering parents objective data and proactive

notifications about their children's device usage. The system consists of three main

components: a Go-based backend server, a Flutter mobile application, and an SQLite3

database for local data storage.

Technical Implementation

The backend implementation leverages Go's concurrency capabilities for efficient

network monitoring, performing ping-based device checks every 10 seconds. The system

integrates Firebase Cloud Messaging (FCM) for reliable push notifications and implements a

sophisticated deadline management system with two-tier alerts (warning notifications 10

minutes before limits, critical alerts at deadline). The Flutter mobile application provides

cross-platform compatibility with optimized energy consumption, achieving only 2.8% daily

battery usage.

Key Achievements

All predefined performance targets were exceeded during the 30-day testing period:

●​ System uptime: 99.7% (target: >99%)

●​ Push notification delivery rate: 96.8% (target: >95%)

●​ Database response time: 47ms average (target: <100ms)

●​ Mobile app energy consumption: 2.8% daily (target: <5%)

64

https://github.com/kovacs213janos/kidmonitor

The system successfully processed 259,200 ping operations with a 94.3% success rate and

delivered 847 notifications (567 warning, 280 critical) with high reliability.

Value Proposition

KidMonitor offers significant advantages over commercial alternatives:

●​ Cost-effectiveness: Eliminates annual subscription fees of $50-150 typically charged

by commercial solutions

●​ Privacy protection: Local data storage ensures family data remains private, complying

with GDPR requirements

●​ Customizability: Open-source architecture allows tailoring to specific family needs

●​ Educational value: Promotes objective, data-driven communication between parents

and children

Academic Integration

The project successfully integrates knowledge from all 26 subject areas studied during

the degree program, demonstrating practical application of theoretical concepts in database

design, network programming, mobile development, project management, and information

security.

Quality Assurance

The system maintains high code quality standards with 85% test coverage for the Go

backend and 92% widget test coverage for the Flutter application. Security testing revealed

no critical vulnerabilities.

Future Development

The modular architecture provides a solid foundation for future enhancements

including AI-powered usage pattern analysis, web-based administration interfaces, iOS

platform support, and potential commercial deployment. The system's scalability has been

designed to support growth from family-level implementations to community-wide

deployments.

Conclusion

65

The KidMonitor project demonstrates that modern open-source technologies can

effectively address real-world family challenges while maintaining high standards of privacy,

security, and usability. The successful completion of all project objectives validates the

chosen technological approach and establishes a foundation for continued development in the

digital wellbeing space.

7. Mellékletek

7.1 Irodalomjegyzék

Aiseesoft (2017): Az Android szülői felügyelet és 3 legjobb alkalmazás használata az Android

számára. Elérhető: https://hu.aiseesoft.com/resource/parental-controls-android.html, letöltve:

2025. augusztus 29.

Al-Subari, S., et al. (2024). „Accelerating Agile Quality Assurance with AI-Powered Testing

Strategies.” International Journal of Scientific Research in Engineering and Management,

08(12). Elérhető:

https://www.researchgate.net/publication/386447824_Accelerating_Agile_Quality_Assuranc

e_with_AI-Powered_Testing_Strategies, letöltve: 2025. szeptember 5.

Badillo-Urquiola, K., Chouhan, C., Chancellor, S., De Choudhary, M., & Wisniewski, P.

(2020). Beyond Parental Control: Designing Adolescent Online Safety Apps Using Value

Sensitive Design. Journal of Adolescent Research, 35(1), 147-173.

Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice (3rd ed.).

Addison-Wesley Professional., Elérhető:

https://www.researchgate.net/publication/224001127_Software_Architecture_In_Practice,

letöltve: 2025. október 30

Çamlıca, Y. & İbrahim, A. (Szerk.) (2024). *9. Uluslararası Bilimsel Araştırmalar ve

İnovasyon Kongresi Kongre Kitabı* [9th International Scientific Research and Innovation

Congress, Congress Book]. ISARC International Science and Art Research Center. Elérhető:

https://miau.my-x.hu/miau/316/9.%20%C4%B0NOVASYON%20KONGRE%20K%C4%B0

TABI.pdf#page=426, letöltve: 2025. november 1-én.

Debreceni Egyetem (é.n.). A szoftvertervezés folyamata. Gyires Könyvtár. Elérhető:

https://gyires.inf.unideb.hu/KMITT/c02/ch06.html, letöltve 2019. november 1-jén.

66

https://hu.aiseesoft.com/resource/parental-controls-android.html
https://www.researchgate.net/publication/386447824_Accelerating_Agile_Quality_Assurance_with_AI-Powered_Testing_Strategies
https://www.researchgate.net/publication/386447824_Accelerating_Agile_Quality_Assurance_with_AI-Powered_Testing_Strategies
https://www.researchgate.net/publication/386447824_Accelerating_Agile_Quality_Assurance_with_AI-Powered_Testing_Strategies
https://www.researchgate.net/publication/224001127_Software_Architecture_In_Practice
https://miau.my-x.hu/miau/316/9.%20%C4%B0NOVASYON%20KONGRE%20K%C4%B0TABI.pdf#page=426
https://miau.my-x.hu/miau/316/9.%20%C4%B0NOVASYON%20KONGRE%20K%C4%B0TABI.pdf#page=426
https://gyires.inf.unideb.hu/KMITT/c02/ch06.html
https://gyires.inf.unideb.hu/KMITT/c02/ch06.html

DEV Community (2024). "KidShield is a powerful, open-source parental control solution

designed for Android devices". Elérhető: https://dev.to/enter?state=new-user&bb=236587,

letöltve: 2025. augusztus 29.

ELTE Alfa Generáció Labor (2024): Az óvodások mobilhasználatainak veszélyeire

figyelmeztet az ELTE kutatócsoportja. Elérhető:

https://www.pestinap.hu/egyetem/2024/04/14/az-ovodasok-mobilhasznalatainak-veszelyeire-f

igyelmeztet-az-elte-kutatocsoportja/, letöltve: 2025. augusztus 29.

Fan, Y., et al. (2023). „Large Language Models for Software Engineering: A Systematic

Literature Review.” Elérhető:

https://www.researchgate.net/publication/373263705_Large_Language_Models_for_Softwar

e_Engineering_A_Systematic_Literature_Review, letöltve: 2025. szeptember 5.

Ghosh, A., et al. (2019). Examining Parent Versus Child Reviews of Parental Control Apps

on Google Play. ResearchGate. Elérhető:

https://www.researchgate.net/publication/334344645_Examining_Parent_Versis_Child_Revie

ws_of_Parental_Control_Apps_on_Google_Play, letöltve: 2025. Szeptember 5.

Kaner, Cem – Bach, James – Pettichord, Bret (2001): Lessons Learned in Software Testing: A

Context-Driven Approach. New York: Wiley.

Kim, Gene – Debois, Patrick – Willis, John – Humble, Jez (2016): The DevOps Handbook:

How to Create World-Class Agility, Reliability, and Security in Technology Organizations.

Portland: IT Revolution Press.

Kovács, B. (2025). AiFusion – Többmodellű LLM-kollaboráció alaprendszerének tervezése

és megvalósítása. Szakdolgozat. Budapest: Kodolányi János Egyetem.

HWSW (2022). Vélemény: vádirat a Szigorú Scrum ellen. Elérhető:

https://www.hwsw.hu/hirek/56957/fejlesztesi-metodologia-agilis-scrum-kanban-lean.html,

letöltve: 2025. november 1-én.

Miau Wiki (2008). Tesztelés. Magyar Internetes Agrárinformatikai Újság. Elérhető:

https://miau.my-x.hu/mediawiki/index.php/Tesztelés, letöltve 2025. november 1-jén.

67

https://dev.to/enter?state=new-user&bb=236587
https://www.pestinap.hu/egyetem/2024/04/14/az-ovodasok-mobilhasznalatainak-veszelyeire-figyelmeztet-az-elte-kutatocsoportja/
https://www.pestinap.hu/egyetem/2024/04/14/az-ovodasok-mobilhasznalatainak-veszelyeire-figyelmeztet-az-elte-kutatocsoportja/
https://www.pestinap.hu/egyetem/2024/04/14/az-ovodasok-mobilhasznalatainak-veszelyeire-figyelmeztet-az-elte-kutatocsoportja/
https://www.researchgate.net/publication/373263705_Large_Language_Models_for_Software_Engineering_A_Systematic_Literature_Review
https://www.researchgate.net/publication/373263705_Large_Language_Models_for_Software_Engineering_A_Systematic_Literature_Review
https://www.researchgate.net/publication/373263705_Large_Language_Models_for_Software_Engineering_A_Systematic_Literature_Review
https://www.google.com/search?q=https://www.researchgate.net/publication/334344645_Examining_Parent_Versis_Child_Reviews_of_Parental_Control_Apps_on_Google_Play
https://www.google.com/search?q=https://www.researchgate.net/publication/334344645_Examining_Parent_Versis_Child_Reviews_of_Parental_Control_Apps_on_Google_Play
https://www.google.com/search?q=https://www.researchgate.net/publication/334344645_Examining_Parent_Versis_Child_Reviews_of_Parental_Control_Apps_on_Google_Play
https://www.hwsw.hu/hirek/56957/fejlesztesi-metodologia-agilis-scrum-kanban-lean.html
https://miau.my-x.hu/mediawiki/index.php/Tesztel%C3%A9s
https://miau.my-x.hu/mediawiki/index.php/Tesztel%C3%A9s

Nagata, J.M., Paul, A., Yen, F., et al. (2025): Associations between media parenting practices

and early adolescent screen use. Pediatric Research, 97, 403-410. Elérhető:

https://doi.org/10.1038/s41390-024-03243-y, letöltve: 2025. augusztus 29.

Pew Research Center (2025). "Screen time: US teens' and parents' experiences, approaches".

Elérhető:

https://www.pewresearch.org/internet/2024/03/11/how-teens-and-parents-approach-screen-ti

me/, letöltve: 2025. augusztus 29.

Pitlik, L., Laki, L., & Pitlik, M. (2018). Adatkezelési tájékoztatók kapcsán felmerülő kritikus

pontok és ezek diskurzív értelmezése oktatási intézmények esetében. MIAU Archívum.

Elérhető: http://miau.my-x.hu/miau/242/gdpr2.docx

Pitlik, L., Pitlik, L. Jr, Pitlik, M., & Gyimesi, Á. (n.d.). Development of smart traffic
evaluation- and influence-modulesbased on non-declarative rules of artificial intelligence,
KJE. Elérhető: http://miau.my-x.hu/miau/236/smart-transportation-pitlik.docx, letöltve: 2025.
október 31-én.

Pitlik, L., Pitlik, L. Jr, Pitlik, M., 2019. Responsibility - The bridge between the robot-cars &
the criminal justice. Elérhető: https://miau.my-x.hu/miau/246/Responsibility.docx, letöltve:
2025. november 1-én.

Raut, V. (2021). „A Comprehensive Study on Backend as a Service (BaaS) Technology.”

International Journal of Research in Engineering and Science (IJRES), 9(6), 46-51. Elérhető:

https://ijres.org/papers/Volume-9/Issue-6/Ser-2/H0906024651.pdf, letöltve: 2025. augusztus

29.

Schwaber, Ken (2004): Agile Project Management with Scrum. Redmond: Microsoft Press.

Turtogtokh, S., Pitlik, L., & Pitlik, L. Jr. (2025). "Objective evaluation of performances in

case of Students based on similarity analyses and Moodle-logs". Elérhető:

https://miau.my-x.hu/miau/319/performances/full_paper.docx, letöltve: 2025. november 1.

Voigt, Paul – von dem Bussche, Axel (2017): The EU General Data Protection Regulation

(GDPR): A Practical Guide. Cham: Springer International Publishing.

68

https://doi.org/10.1038/s41390-024-03243-y
https://doi.org/10.1038/s41390-024-03243-y
https://www.pewresearch.org/internet/2024/03/11/how-teens-and-parents-approach-screen-time/
https://www.pewresearch.org/internet/2024/03/11/how-teens-and-parents-approach-screen-time/
https://www.pewresearch.org/internet/2024/03/11/how-teens-and-parents-approach-screen-time/
http://miau.my-x.hu/miau/242/gdpr2.docx
http://miau.my-x.hu/miau/236/smart-transportation-pitlik.docx
https://miau.my-x.hu/miau/246/Responsibility.docx
https://ijres.org/papers/Volume-9/Issue-6/Ser-2/H0906024651.pdf
https://ijres.org/papers/Volume-9/Issue-6/Ser-2/H0906024651.pdf
https://miau.my-x.hu/miau/315/moodle/
https://miau.my-x.hu/miau/319/performances/full_paper.docx

7.2 Rövidítések jegyzéke

API - Application Programming Interface (alkalmazásprogramozási interfész)

ACID - Atomicitás, Konzisztencia, Izoláció, Tartósság (Atomicity, Consistency, Isolation,

Durability)

APK - Android Package (Android csomag)

CI/CD - Continuous Integration/Continuous Deployment (folyamatos integráció/folyamatos

telepítés)

CLI - Command Line Interface (parancssori felület)

CORS - Cross-Origin Resource Sharing (kereszt-eredetű erőforrás megosztás)

CPU - Central Processing Unit (központi feldolgozó egység)

CRUD - Create, Read, Update, Delete (létrehozás, olvasás, frissítés, törlés)

CSS - Cascading Style Sheets (lépcsőzetes stíluslapok)

DB - Database (adatbázis)

DHCP - Dynamic Host Configuration Protocol (dinamikus kiszolgáló konfigurációs

protokoll)

DNS - Domain Name System (tartománynév rendszer)

DRY - Don't Repeat Yourself (ne ismételd magad)

FCM - Firebase Cloud Messaging (Firebase felhő üzenetküldés)

FOSS - Szabad és Nyílt Forráskódú Szoftver (Free and Open-Source Software)

FTP - File Transfer Protocol (fájlátviteli protokoll)

GDPR - General Data Protection Regulation (általános adatvédelmi rendelet)

GET - HTTP GET metódus

GIT - verziókezelő rendszer

GORM - Go Objektum-Relációs Leképező (Go Object-Relational Mapper)

GUI - Graphical User Interface (grafikus felhasználói felület)

HTML - HyperText Markup Language (hiperszöveges jelölőnyelv)

HTTP - HyperText Transfer Protocol (hiperszöveges átviteli protokoll)

HTTPS - HyperText Transfer Protocol Secure (biztonságos hiperszöveges átviteli protokoll)

ICMP - Internet Control Message Protocol (internetes vezérlőüzenet protokoll)

IDE - Integrated Development Environment (integrált fejlesztői környezet)

IP - Internet Protocol (internetes protokoll)

JSON - JavaScript Object Notation (JavaScript objektum jelölés)

KPI - Key Performance Indicator (kulcs teljesítménymutató)

LAN - Local Area Network (helyi hálózat)

69

LLM - Large Language Model (nagy nyelvi modell)

MAC - Media Access Control (média hozzáférés vezérlés)

MIAU - Mesterséges Intelligencia Alapú Ugrás (a KJE/MY-X kutatási kontextusra utaló

magyar betűszó)

MVP - Minimum Viable Product (minimálisan életképes termék)

MVC - Model-View-Controller (modell-nézet-vezérlő)

MVVM - Model-View-ViewModel (modell-nézet-nézet-modell)

NAT - Network Address Translation (hálózati címfordítás)

NTP - Hálózati Idő Protokoll (Network Time Protocol)

OOP - Object-Oriented Programming (objektum-orientált programozás)

OS - Operating System (operációs rendszer)

POST - HTTP POST metódus

PUT - HTTP PUT metódus

RAM - Random Access Memory (közvetlen hozzáférésű memória)

REST - REpresentational State Transfer (reprezentációs állapotátvitel)

RTT - Round Trip Time (oda-vissza idő)

SLA - Service Level Agreement (szolgáltatási szint megállapodás)

SOLID - Single Responsibility, Open-Closed, Liskov Substitution, Interface Segregation,

Dependency Inversion (egyetlen felelősség, nyitott-zárt, Liskov helyettesítési, interfész

szegregációs, függőség invertálási elvek)

SaaS - Service as a Software, szolgáltatás mint szoftver

SQL - Structured Query Language (strukturált lekérdező nyelv)

SSH - Secure Shell (biztonságos héj)

SSL/TLS - Secure Sockets Layer/Transport Layer Security (biztonságos szoftvercsatorna

réteg/szállítási réteg biztonság)

TCP - Transmission Control Protocol (átviteli vezérlő protokoll)

UDP - User Datagram Protocol (felhasználói datagram protokoll)

UI - User Interface (felhasználói felület)

UML - Unified Modeling Language (egységes modellező nyelv)

URL - Uniform Resource Locator (egységes erőforrás helymeghatározó)

UX - User Experience (felhasználói élmény)

VLAN - Virtual Local Area Network (virtuális helyi hálózat)

VM - Virtual Machine (virtuális gép)

VPN - Virtual Private Network (virtuális magánhálózat)

70

WAN - Wide Area Network (nagy kiterjedésű hálózat)

XML - eXtensible Markup Language (kiterjeszthető jelölőnyelv)

YAML - YAML Ain't Markup Language (YAML nem jelölőnyelv)

KJE - Kodolányi János Egyetem

71

7.3 Ábrák jegyzéke

Ábra 1. Rendszer diagram………………………………………………………………31

Ábra 2. Szekvencia diagram…………………………………………………………….33

Ábra 3. Állapot diagram…….…….…….…….…….…….…….…….…….…………..34

Ábra 4. Mobilalkalmazás képernyő……….…….…….…….…….…….…….……...…38

Ábra 5. Backend és Flutter futtatás, Android Studio Emulátor képernyő egyben………39

72

7.4 Táblázatok jegyzéke

Táblázat 1. alkalmazott technológiák….…….…….…….…….…….…….…….……...…11

Táblázat 2. A felhasznált irodalmak….…….…….….…….…….…….…….………....…15

Táblázat 3. Teljesítmény kritériumok…….…….…….…….…….…….…….…….….….61

73

7.5 Definíciók jegyzéke

A

API (Application Programming Interface) - Alkalmazásprogramozási interfész, amely

meghatározza, hogyan kommunikálhatnak különböző szoftverkomponensek egymással.

APK (Android Package) - Android alkalmazások telepítőcsomagjának fájlformátuma.

Audit Trail - Nyomkövetési napló, amely rögzíti a rendszerben végrehajtott műveleteket és

változtatásokat.

B

Backend - A szoftverrendszer szerveroldali része, amely az üzleti logikát, adatkezelést és API

szolgáltatásokat biztosítja.

Build Process - A forráskódból futtatható alkalmazás létrehozásának automatizált folyamata.

C

CI/CD (Continuous Integration/Continuous Deployment) - Folyamatos integráció és telepítés,

amely automatizálja a kód tesztelését és publikálását.

CLI (Command Line Interface) - Parancssori felület, szöveges parancsok segítségével

vezérelhető interfész.

Clean Architecture - Szoftverarchitektúrai minta, amely a kód rétegekre bontásával biztosítja

a karbantarthatóságot és tesztelhetőséget.

CORS (Cross-Origin Resource Sharing) - Webes biztonsági mechanizmus, amely

szabályozza a különböző domainekről érkező HTTP kéréseket.

CRUD (Create, Read, Update, Delete) - Négy alapvető adatkezelési művelet.

D

Daemon - Háttérben futó szolgáltatás, amely felhasználói interakció nélkül működik.

Deadline - Határidő, az eszközhasználat időbeli korlátja a rendszerben.

74

Deployment - Szoftver telepítése és üzembe helyezése célrendszeren.

Docker - Konténerizációs platform, amely alkalmazások izolált környezetben való futtatását

teszi lehetővé.

Docker Compose - Eszköz többkonténeres Docker alkalmazások definiálására és futtatására.

F

FCM (Firebase Cloud Messaging) - Google felhőalapú üzenetküldő szolgáltatása mobil- és

webes alkalmazások számára.

Firebase - Google fejlesztői platform, amely backend szolgáltatásokat nyújt mobil- és

webalkalmazásokhoz.

Flutter - Google által fejlesztett, nyílt forráskódú keresztplatformos

mobilalkalmazás-fejlesztő keretrendszer.

Foreign Key - Külső kulcs, amely egy tábla rekordját összekapcsolja egy másik tábla

elsődleges kulcsával.

G

GDPR (General Data Protection Regulation) - Európai Uniós általános adatvédelmi rendelet.

Git - Elosztott verziókezelő rendszer forráskód nyomon követésére.

Go (Golang) - Google által fejlesztett statikusan típusos, kompilált programozási nyelv.

GORM - Go programozási nyelvhez készült objektum-relációs leképező (ORM) könyvtár.

H

Health Check - Rendszer-egészségügyi ellenőrzés, amely a szolgáltatások működőképességét

monitorozza.

HTTP/HTTPS - Webes kommunikációs protokollok, a HTTPS titkosított változat.

Hypervisor - Virtualizációs szoftver, amely lehetővé teszi több virtuális gép egyidejű

futtatását.

75

I

ICMP (Internet Control Message Protocol) - Internetes vezérlő üzenetprotokoll, ping parancs

alapja.

IP Address - Internet Protocol cím, hálózati eszközök egyedi azonosítója.

IoT (Internet of Things) - Eszközök internete, hálózatra csatlakoztatott „okos" eszközök

összessége.

J

JSON (JavaScript Object Notation) - Könnyűsúlyú adatcsere formátum.

JWT (JSON Web Token) - Biztonságos információátvitelre használt nyílt szabvány.

K

KidMonitor - A szakdolgozat keretében fejlesztett családi eszközhasználat-monitorozó

rendszer.

L

Lifeline - UML szekvencia diagramokban az objektum életvonala.

Load Balancer - Terheléselosztó, amely a bejövő kéréseket több szerver között osztja el.

Logging - Naplózás, események és hibák rögzítése fájlokba diagnosztikai célból.

M

MAC Address - Média hozzáférés vezérlő cím, hálózati interfészek egyedi azonosítója.

Middleware - Köztes szoftverréteg, amely különböző alkalmazáskomponensek közötti

kommunikációt támogatja.

Migration - Adatbázis séma változtatásainak verziókezelt alkalmazása.

MVP (Minimum Viable Product) - Minimálisan életképes termék, alapfunkciókkal

rendelkező első verzió.

76

N

NAT (Network Address Translation) - Hálózati címfordítás, privát IP címek internetes

kommunikációjának lehetővé tétele.

O

ORM (Object-Relational Mapping) - Objektum-relációs leképezés, objektumok és adatbázis

rekordok közötti automatikus konverzió.

P

Ping - Hálózati diagnosztikai eszköz, amely ICMP üzenetekkel teszteli a kapcsolatot.

Primary Key - Elsődleges kulcs, táblában lévő rekordok egyedi azonosítója.

Push Notification - Mobilalkalmazásokba küldött azonnali értesítés.

R

REST (Representational State Transfer) - Webszolgáltatások architekturális stílusa.

RTT (Round Trip Time) - Oda-vissza idő, hálózati üzenet elküldésétől a válasz

megérkezéséig eltelt idő.

S

Soft Delete - „Lágy" törlés, adat megjelölése töröltre anélkül, hogy fizikailag eltávolításra

kerülne.

SQLite - Beágyazott relációs adatbázis-kezelő rendszer.

SSL/TLS - Titkosítási protokollok biztonságos internetes kommunikációhoz.

Systemd - Linux rendszerek init rendszere és szolgáltatáskezelője.

T

TCP/IP - Internetes kommunikációs protokollkészlet.

Timeout - Időtúllépés, művelet maximális várakozási idejének lejárta.

77

U

UML (Unified Modeling Language) - Egységes modellezőnyelv szoftverrendszerek

tervezéséhez.

Unit Test - Egységteszt, egyedi kódegységek izolált tesztelése.

UUID (Universally Unique Identifier) - Univerzálisan egyedi azonosító.

V

VPN (Virtual Private Network) - Virtuális magánhálózat, titkosított kapcsolat interneten

keresztül.

W

Webhook - HTTP-alapú visszahívás, eseményekről való automatikus értesítésre.

Y

YAML (YAML Ain't Markup Language) - Ember által olvasható adatsorosítási szabvány,

konfigurációs fájlokhoz gyakran használt.

78

7.6 Forráskód részletek

A dolgozat teljes forráskódja a https://github.com/kovacs213janos/kidmonitor URL-en érhető
el.

Kódrészlet 1. SQL szerkezet

-- Felhasználók tábla​
CREATE TABLE users (​
 id INTEGER PRIMARY KEY AUTOINCREMENT,​
 name TEXT NOT NULL,​
 is_admin BOOLEAN DEFAULT FALSE,​
 email TEXT​
);​
​
-- Felügyelt eszközök tábla​
CREATE TABLE monitored_devices (​
 id INTEGER PRIMARY KEY AUTOINCREMENT,​
 user_id INTEGER,​
 mac_address TEXT NOT NULL UNIQUE,​
 ip_address TEXT NOT NULL,​
 device_name TEXT,​
 FOREIGN KEY (user_id) REFERENCES users(id) ON DELETE CASCADE​
);​
​
-- Vevő készülékek tábla​
CREATE TABLE receiver_devices (​
 id INTEGER PRIMARY KEY AUTOINCREMENT,​
 name TEXT NOT NULL,​
 device_type TEXT CHECK(device_type IN ('iOS', 'Android')),​
 Is_mobile BOOLEAN DEFAULT FALSE,​
 user_id INTEGER,​
 fcm_token_id INTEGER,​
 FOREIGN KEY (user_id) REFERENCES users(id) ON DELETE CASCADE,​
 FOREIGN KEY (fcm_token_id) REFERENCES fcm_tokens(id)​
);​
​
-- Határidők tábla​
CREATE TABLE deadlines (​
 id INTEGER PRIMARY KEY AUTOINCREMENT,​
 user_id INTEGER,​
 device_id INTEGER,​
 start_time TIME NOT NULL,​
 end_time TIME NOT NULL,​
 day_of_week TEXT CHECK(day_of_week IN
('monday','tuesday','wednesday','thursday','friday','saturday','sunday','all')),​
 FOREIGN KEY (user_id) REFERENCES users(id) ON DELETE CASCADE,​
 FOREIGN KEY (device_id) REFERENCES monitored_devices(id)​

79

https://github.com/kovacs213janos/kidmonitor

);​
​
-- FCM tokenek tábla​
CREATE TABLE fcm_tokens (​
 id INTEGER PRIMARY KEY AUTOINCREMENT,​
 token TEXT NOT NULL UNIQUE,​
 last_updated DATETIME DEFAULT CURRENT_TIMESTAMP​
);​
​
-- Események tábla​
CREATE TABLE events (​
 id INTEGER PRIMARY KEY AUTOINCREMENT,​
 timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,​
 priority INTEGER CHECK(priority IN (1,2)),​
 receiver_id INTEGER,​
 message TEXT,​
 user_id INTEGER,​
 device_id INTEGER,​
 FOREIGN KEY (receiver_id) REFERENCES receiver_devices(id),​
 FOREIGN KEY (user_id) REFERENCES users(id),​
 FOREIGN KEY (device_id) REFERENCES monitored_devices(id)​
);​
​
-- Indexek a gyakran használt mezőkre​
CREATE INDEX idx_monitored_devices_mac ON monitored_devices(mac_address);​
CREATE INDEX idx_events_timestamp ON events(timestamp);​
CREATE INDEX idx_deadlines_day ON deadlines(day_of_week);

Kódrészlet 2. Adatbázis pool beállítása

go​
// Kapcsolat pool beállítása​
sqlDB.SetMaxIdleConns(10)​
sqlDB.SetMaxOpenConns(100)​
sqlDB.SetConnMaxLifetime(time.Hour)

Kódrészlet 3. Ping random delay

go​
// Random delay a hálózati terhelés csökkentéséhez​
delay := time.Duration(rand.Intn(1000)) * time.Millisecond​
time.Sleep(delay)

Kódrészlet 4. FCM API kulcs

dart​
final fallbackConfig = {​

80

 'api_key': 'API_KEY',​
 'project_id': 'kidmonitor-project',​
 // ... további konfiguráció​
};

Kódrészlet 5. GORM foreign key

go​
type MonitoredDevice struct {​
 UserID uint `gorm:"not null;index"`​
 User User `gorm:"foreignKey:UserID"`​
 // ... további mezők​
}

Kódrészlet 6. TestUserOperation függvény

go​
func TestUserOperations(t *testing.T) {​
 db := setupTestDB()​
 defer db.Close()​
 ​
 // Felhasználó létrehozása​
 user := models.User{Name: "Test User", Email: "test@example.com"}​
 err := db.Create(&user).Error​
 assert.NoError(t, err)​
 assert.NotZero(t, user.ID)​
 ​
 // Felhasználó lekérése​
 retrievedUser, err := db.GetUserByID(user.ID)​
 assert.NoError(t, err)​
 assert.Equal(t, user.Name, retrievedUser.Name)​
}

Kódrészlet 7. TestPingDatabaseIntegration függvény

func TestPingDatabaseIntegration(t *testing.T) {​
 db := setupTestDB()​
 pingMonitor := ping.NewPingMonitor(db, 1*time.Second, 1*time.Second)​
 ​
 // Teszt eszköz létrehozása​
 device := createTestDevice(db)​
 ​
 // Ping végrehajtása és adatbázisba mentése​
 result, err := pingMonitor.PingDeviceOnce(device.IPAddress)​
 assert.NoError(t, err)​
 ​
 // Ellenőrizzük, hogy az eredmény mentésre került​

81

 events, err := db.GetRecentEvents(1, []string{models.EventTypePingSuccess})​
 assert.NoError(t, err)​
 assert.Len(t, events, 1)​
}

Kódrészlet 8. Flutter widget teszt

go​
void main() {​
 testWidgets('KidMonitor app alapfunkciók tesztelése', (WidgetTester tester) async {​
 // App betöltése​
 await tester.pumpWidget(MyApp());​
 await tester.pumpAndSettle();​
​
 // Főcím ellenőrzése​
 expect(find.text('KidMonitor'), findsOneWidget);​
 ​
 // Teszt gombok ellenőrzése​
 expect(find.text('WARNING'), findsOneWidget);​
 expect(find.text('CRITICAL'), findsOneWidget);​
 ​
 // Gomb működés tesztelése​
 await tester.tap(find.text('WARNING'));​
 await tester.pumpAndSettle();​
 ​
 // FCM token szekció ellenőrzése​
 expect(find.text('FCM Token:'), findsOneWidget);​
 });​
}

Kódrészlet 9. FCM integráció teszt függvény

test('FCM token registration', () async {​
​ final mockFCM = MockFirebaseMessaging();​
​ const testToken = 'test-fcm-token-12345';​
​
​ when(mockFCM.getToken()).thenAnswer((_) async => testToken);​
​
​ final homeScreen = HomeScreenState();​
​ await homeScreen.getFCMToken();​
​
​ expect(homeScreen.fcmToken, equals(testToken));​
});

Kódrészlet 10. Adatbázis teljesítmény teszt függvény

82

func BenchmarkDatabaseOperations(b *testing.B) {​
​ db := setupTestDB()​
​ defer db.Close()​
​
​ b.Run("CreateEvent", func(b *testing.B) {​
​ ​ for i := 0; i < b.N; i++ {​
​ ​ ​ event := &models.Event{​
​ ​ ​ ​ EventType: models.EventTypePingSuccess,​
​ ​ ​ ​ Message: "Benchmark event",​
​ ​ ​ ​ Timestamp: time.Now(),​
​ ​ ​ }​
​ ​ ​ db.CreateEvent(event)​
​ ​ }​
​ })​
​
​ b.Run("GetRecentEvents", func(b *testing.B) {​
​ ​ for i := 0; i < b.N; i++ {​
​ ​ ​ db.GetRecentEvents(100, []string{models.EventTypePingSuccess})​
​ ​ }​
​ })​
}

Kódrészlet 11. SQL injection teszt függvény

func TestSQLInjectionProtection(t *testing.T) {​
​ db := setupTestDB()​
​ defer db.Close()​
​
​ maliciousInputs := []string{​
​ ​ "'; DROP TABLE users; --",​
​ ​ "' OR '1'='1",​
​ ​ "'; DELETE FROM monitored_devices; --",​
​ ​ "' UNION SELECT * FROM fcm_tokens --",​
​ ​ "'; INSERT INTO users (name) VALUES ('hacker'); --",​
​ ​ "admin'--",​
​ ​ "' OR 1=1 --",​
​ }​
​
​ for _, input := range maliciousInputs {​
​ ​ t.Run(fmt.Sprintf("malicious_input_%s", input), func(t *testing.T) {​
​ ​ ​ // Try to use malicious input​
​ ​ ​ _, err := db.GetUserByEmail(input)​
​ ​ ​ ​
​ ​ ​ // Response should reject malicious input​

83

​ ​ ​ assert.Error(t, err, "Should reject malicious input: %s", input)​
​ ​ })​
​ }​
​
​ // Verify database structure remains intact​
​ var tableCount int​
​ result := db.Raw("SELECT COUNT(*) FROM sqlite_master WHERE
type='table'").Scan(&tableCount)​
​ require.NoError(t, result.Error)​
​ assert.Equal(t, 6, tableCount, "Database structure should remain intact")​
​
​ // Verify no unauthorized data was inserted​
​ var userCount int64​
​ db.Model(&models.User{}).Count(&userCount)​
​ // Should only have our test users, not any injected ones​
​ assert.LessOrEqual(t, userCount, int64(10), "No additional users should be
created")​
}

Kódrészlet 12. Access Control teszt függvény

func TestAccessControl(t *testing.T) {​
​ apiServer := setupTestAPIServer()​
​
​ // Unauthorized access test​
​ req := httptest.NewRequest("GET", "/api/status", nil)​
​ req.RemoteAddr = "192.168.2.100:12345" // Not in allowed IP range​
​
​ recorder := httptest.NewRecorder()​
​ apiServer.ServeHTTP(recorder, req)​
​
​ assert.Equal(t, http.StatusForbidden, recorder.Code)​
​
​ // Authorized access test​
​ req.RemoteAddr = "192.168.88.100:12345" // In allowed IP range​
​ recorder = httptest.NewRecorder()​
​ apiServer.ServeHTTP(recorder, req)​
​
​ assert.Equal(t, http.StatusOK, recorder.Code)​
}

Kódrészlet 13. Összes teszt futtatása

go test kidmonitor_test.go ​

84

Elvárt eredmény a következő:​
2025/08/26 13:44:43 KidMonitor comprehensive tests completed​
PASS

Kódrészlet 14. Docker telepítés szkript

Debian/Ubuntu rendszeren​
curl -fsSL https://get.docker.com -o get-docker.sh​
sudo sh get-docker.sh​
​
Docker Compose telepítése​
sudo curl -L
"https://github.com/docker/compose/releases/download/v2.24.0/docker-compose-$(uname
-s)-$(uname -m)" -o /usr/local/bin/docker-compose​
sudo chmod +x /usr/local/bin/docker-compose​
​
Docker szolgáltatás engedélyezése​
sudo systemctl enable docker​
sudo systemctl start docker

Kódrészlet 15. Docker fájl

Dockerfile létrehozása​
Multi-stage build optimalizált méretért​
FROM golang:1.21-alpine AS builder​
​
LABEL maintainer="Kovács János <kovacs213janos@kidmonitor.hu>"​
LABEL description="KidMonitor Backend - Eszközmonitorozó rendszer"​
​
Build függőségek telepítése​
RUN apk add --no-cache git ca-certificates tzdata​
​
Munkakönyvtár beállítása​
WORKDIR /app​
​
Go modulok másolása és letöltése​
COPY go.mod go.sum ./​
RUN go mod download && go mod verify​
​
Forráskód másolása​
COPY . .​
​
Statikus bináris építése​
RUN CGO_ENABLED=0 GOOS=linux GOARCH=amd64 go build \​

85

 -ldflags='-w -s -extldflags "-static"' \​
 -a -installsuffix cgo \​
 -o kidmonitor ./cmd/kidmonitor​
​
Production stage - minimális Alpine image​
FROM alpine:3.19​
​
Biztonsági frissítések és eszközök telepítése​
RUN apk --no-cache add \​
 ca-certificates \​
 tzdata \​
 sqlite \​
 iputils \​
 curl \​
 && rm -rf /var/cache/apk/*​
​
Nem-root felhasználó létrehozása​
RUN addgroup -g 1001 -S kidmonitor && \​
 adduser -u 1001 -D -S -G kidmonitor kidmonitor​
​
Könyvtárak létrehozása​
RUN mkdir -p /etc/kidmonitor /var/lib/kidmonitor /var/log/kidmonitor && \​
 chown -R kidmonitor:kidmonitor /etc/kidmonitor /var/lib/kidmonitor
/var/log/kidmonitor​
​
Bináris másolása​
COPY --from=builder /app/kidmonitor /usr/local/bin/kidmonitor​
RUN chmod +x /usr/local/bin/kidmonitor​
​
CAP_NET_RAW capability beállítása ping funkcióhoz​
RUN apk add --no-cache libcap && \​
 setcap cap_net_raw+ep /usr/local/bin/kidmonitor && \​
 apk del libcap​
​
Felhasználóváltás​
USER kidmonitor​
​
Munkakövytár​
WORKDIR /var/lib/kidmonitor​
​
Portok és volumek​
EXPOSE 8080​
VOLUME ["/var/lib/kidmonitor", "/var/log/kidmonitor", "/etc/kidmonitor"]​

86

​
Health check​
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \​
 CMD kidmonitor status --config /etc/kidmonitor/config.yaml || exit 1​
​
Entrypoint​
ENTRYPOINT ["kidmonitor", "server", "--config", "/etc/kidmonitor/config.yaml"]

Kódrészlet 16. Docker Composer fájl

version: '3.8'​
​
services:​
 kidmonitor:​
 build:​
 context: .​
 dockerfile: Dockerfile​
 args:​
 - BUILD_DATE=${BUILD_DATE:-$(date -u +"%Y-%m-%dT%H:%M:%SZ")}​
 - VERSION=${VERSION:-latest}​
 ​
 image: kidmonitor:${VERSION:-latest}​
 container_name: kidmonitor-backend​
 restart: unless-stopped​
 ​
 # Host network mode - szükséges a ping funkcionalitáshoz​
 network_mode: host​
 ​
 # Capabilities ping funkcióhoz​
 cap_add:​
 - NET_RAW​
 - NET_ADMIN​
 ​
 # Environment variables​
 environment:​
 - TZ=Europe/Budapest​
 - GO_ENV=production​
 - KIDMONITOR_LOG_LEVEL=info​
 - KIDMONITOR_LOG_FILE=/var/log/kidmonitor/kidmonitor.log​
 ​
 # Volumes - perzisztens adatok​
 volumes:​
 # Konfiguráció (read-only)​
 - ${CONFIG_DIR:-./configs}:/etc/kidmonitor:ro​

87

 ​
 # Perzisztens adatok​
 - kidmonitor_data:/var/lib/kidmonitor​
 - kidmonitor_logs:/var/log/kidmonitor​
 ​
 # Firebase credentials​
 -
${FIREBASE_CREDENTIALS:-./firebase-credentials.json}:/etc/kidmonitor/firebase-cred
entials.json:ro​
 ​
 # Resource limits​
 deploy:​
 resources:​
 limits:​
 memory: 512M​
 cpus: '1.0'​
 reservations:​
 memory: 128M​
 cpus: '0.1'​
 ​
 # Health check​
 healthcheck:​
 test: ["CMD", "kidmonitor", "status", "--config", "/etc/kidmonitor/config.yaml"]​
 interval: 30s​
 timeout: 10s​
 retries: 3​
 start_period: 10s​
 ​
 # Logging konfiguráció​
 logging:​
 driver: "json-file"​
 options:​
 max-size: "10m"​
 max-file: "3"​
 labels: "service=kidmonitor"​
​
Perzisztens volume-ok​
volumes:​
 kidmonitor_data:​
 driver: local​
 driver_opts:​
 type: none​
 o: bind​

88

 device: ${DATA_DIR:-./data}​
 ​
 kidmonitor_logs:​
 driver: local​
 driver_opts:​
 type: none​
 o: bind​
 device: ${LOGS_DIR:-./logs}​
​
Opcionális custom network​
networks:​
 default:​
 name: kidmonitor_network​
 external: false

Kódrészlet 17. Docker .env fájl

Kódrészlet 18. Kidmonitor konfigurációs fájl

KidMonitor Production Configuration​
server:​

89

KidMonitor Environment Configuration​
VERSION=1.0.0​
BUILD_DATE=2025-08-26T10:00:00Z​
​
Könyvtár útvonalak​
CONFIG_DIR=./configs​
DATA_DIR=./data​
LOGS_DIR=./logs​
FIREBASE_CREDENTIALS=./firebase-credentials.json​
​
Hálózati beállítások​
BACKEND_PORT=8080​
BACKEND_HOST=0.0.0.0​
​
Monitoring​
MONITORING_INTERVAL=10s​
PING_TIMEOUT=5s​
​
Logging​
LOG_LEVEL=info​
LOG_MAX_SIZE=100MB​
LOG_MAX_BACKUPS=5

 host: "0.0.0.0"​
 port: 8080​
 read_timeout: "30s"​
 write_timeout: "30s"​
 idle_timeout: "60s"​
​
database:​
 type: "sqlite3"​
 connection: "/var/lib/kidmonitor/kidmonitor.db"​
 max_idle_conns: 10​
 max_open_conns: 100​
 conn_max_lifetime: "1h"​
​
monitoring:​
 ping_interval: "10s"​
 ping_timeout: "5s"​
 max_concurrent_pings: 50​
 network_interface: ""​
​
fcm:​
 credentials_file: "/etc/kidmonitor/firebase-credentials.json"​
 project_id: "your-firebase-project-id"​
​
logging:​
 level: "info"​
 output: "/var/log/kidmonitor/kidmonitor.log"​
 max_size: 100​
 max_backups: 5​
 max_age: 30​
 compress: true​
​
security:​
 allowed_networks:​
 - "127.0.0.0/8"​
 - "192.168.0.0/16"​
 - "10.0.0.0/8"​
 rate_limit:​
 requests_per_minute: 60​
 burst: 10​
​
notifications:​
 warning_minutes_before: 10​
 critical_priority: 2​

90

 warning_priority: 1​
 batch_size: 100​
 retry_attempts: 3​
 retry_delay: "30s"​
​
cleanup:​
 old_events_days: 30​
 old_logs_days: 7​
 cleanup_interval: "24h"

Kódrészlet 19. Flutter FCM konfigurációja

// Firebase konfiguráció dinamikus betöltése​
class FirebaseConfigService {​
 static const String fallbackProjectId = "kidmonitor-production";​
 ​
 static Future<Map<String, dynamic>> loadConfig() async {​
 try {​
 // Backend-től konfiguráció lekérése​
 final response = await http.get(​
 Uri.parse('${AppConfig.backendUrl}/api/config/firebase')​
);​
 ​
 if (response.statusCode == 200) {​
 return jsonDecode(response.body);​
 }​
 } catch (e) {​
 print('Firebase config loading failed: $e');​
 }​
 ​
 // Fallback konfiguráció​
 return {​
 'project_id': fallbackProjectId,​
 'api_key': 'YOUR_API_KEY_HERE',​
 'app_id': 'YOUR_APP_ID_HERE',​
 'messaging_sender_id': 'YOUR_SENDER_ID_HERE',​
 };​
 }​
}

Kódrészlet 20. Nginx reverse proxy konfigurációja

server {​
 listen 80;​

91

 server_name kidmonitor.yourdomain.com;​
 return 301 https://$server_name$request_uri;​
}​
​
server {​
 listen 443 ssl http2;​
 server_name kidmonitor.yourdomain.com;​
​
 ssl_certificate /etc/ssl/certs/kidmonitor.crt;​
 ssl_certificate_key /etc/ssl/private/kidmonitor.key;​
 ​
 ssl_protocols TLSv1.2 TLSv1.3;​
 ssl_ciphers ECDHE-RSA-AES256-GCM-SHA512:DHE-RSA-AES256-GCM-SHA512;​
 ssl_prefer_server_ciphers off;​
​
 location / {​
 proxy_pass http://127.0.0.1:8080;​
 proxy_set_header Host $host;​
 proxy_set_header X-Real-IP $remote_addr;​
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;​
 proxy_set_header X-Forwarded-Proto $scheme;​
 }​
}

Kódrészlet 21. Telepítő szkript

#!/bin/bash​
deploy.sh - KidMonitor automatizált telepítő script​
​
set -euo pipefail​
​
Színes output​
RED='\033[0;31m'​
GREEN='\033[0;32m'​
YELLOW='\033[1;33m'​
BLUE='\033[0;34m'​
NC='\033[0m'​
​
print_status() { echo -e "${BLUE}[INFO]${NC} $1"; }​
print_success() { echo -e "${GREEN}[SUCCESS]${NC} $1"; }​
print_warning() { echo -e "${YELLOW}[WARNING]${NC} $1"; }​
print_error() { echo -e "${RED}[ERROR]${NC} $1"; }​
​
Alapértelmezett értékek​

92

INSTALL_DIR="/opt/kidmonitor"​
DATA_DIR="/var/lib/kidmonitor"​
LOGS_DIR="/var/log/kidmonitor"​
CONFIG_DIR="/etc/kidmonitor"​
COMPOSE_FILE="docker-compose.yml"​
VERSION="latest"​
​
Paraméterek feldolgozása​
while [[$# -gt 0]]; do​
 case $1 in​
 --install-dir)​
 INSTALL_DIR="$2"​
 shift 2​
 ;;​
 --version)​
 VERSION="$2"​
 shift 2​
 ;;​
 --help)​
 echo "KidMonitor Deployment Script"​
 echo "Usage: $0 [OPTIONS]"​
 echo ""​
 echo "Options:"​
 echo " --install-dir DIR Installation directory (default: /opt/kidmonitor)"​
 echo " --version VERSION Version to deploy (default: latest)"​
 echo " --help Show this help message"​
 exit 0​
 ;;​
 *)​
 print_error "Unknown option: $1"​
 exit 1​
 ;;​
 esac​
done​
​
Root jogosultság ellenőrzése​
if [[$EUID -ne 0]]; then​
 print_error "Ez a script root jogosultságokat igényel"​
 exit 1​
fi​
​
Előfeltételek ellenőrzése​
check_prerequisites() {​

93

 print_status "Előfeltételek ellenőrzése..."​
 ​
 # Docker ellenőrzése​
 if ! command -v docker &> /dev/null; then​
 print_error "Docker nincs telepítve"​
 exit 1​
 fi​
 ​
 # Docker Compose ellenőrzése​
 if ! command -v docker-compose &> /dev/null; then​
 print_error "Docker Compose nincs telepítve"​
 exit 1​
 fi​
 ​
 # Hálózati kapcsolat ellenőrzése​
 if ! curl -s --connect-timeout 5 https://gcr.io &> /dev/null; then​
 print_warning "Nincs internetkapcsolat vagy Docker registry nem elérhető"​
 fi​
 ​
 print_success "Előfeltételek teljesítve"​
}​
​
Könyvtárak létrehozása​
create_directories() {​
 print_status "Könyvtárak létrehozása..."​
 ​
 directories=("$INSTALL_DIR" "$DATA_DIR" "$LOGS_DIR" "$CONFIG_DIR")​
 ​
 for dir in "${directories[@]}"; do​
 if [[! -d "$dir"]]; then​
 mkdir -p "$dir"​
 print_success "Könyvtár létrehozva: $dir"​
 else​
 print_status "Könyvtár már létezik: $dir"​
 fi​
 done​
 ​
 # Jogosultságok beállítása​
 chown -R 1001:1001 "$DATA_DIR" "$LOGS_DIR"​
 chmod 755 "$CONFIG_DIR"​
}​
​
Konfiguráció telepítése​

94

install_configuration() {​
 print_status "Konfiguráció telepítése..."​
 ​
 # Alapértelmezett config.yaml létrehozása ha nem létezik​
 if [[! -f "$CONFIG_DIR/config.yaml"]]; then​
 cat > "$CONFIG_DIR/config.yaml" << 'EOF'​
server:​
 host: "0.0.0.0"​
 port: 8080​
​
database:​
 type: "sqlite3"​
 connection: "/var/lib/kidmonitor/kidmonitor.db"​
​
monitoring:​
 ping_interval: "10s"​
 ping_timeout: "5s"​
​
logging:​
 level: "info"​
 output: "/var/log/kidmonitor/kidmonitor.log"​
EOF​
 print_success "Alapértelmezett konfiguráció létrehozva"​
 else​
 print_status "Konfiguráció már létezik, átugrás"​
 fi​
}​
​
Docker Compose fájl telepítése​
install_compose_file() {​
 print_status "Docker Compose konfiguráció telepítése..."​
 ​
 cd "$INSTALL_DIR"​
 ​
 # Ha nincs compose fájl, létrehozzuk​
 if [[! -f "$COMPOSE_FILE"]]; then​
 # Itt helyezzük el a compose file tartalmat...​
 print_success "Docker Compose fájl létrehozva"​
 fi​
}​
​
Szolgáltatás indítása​
start_services() {​

95

 print_status "Szolgáltatások indítása..."​
 ​
 cd "$INSTALL_DIR"​
 ​
 # Environment fájl létrehozása​
 cat > .env << EOF​
VERSION=$VERSION​
CONFIG_DIR=$CONFIG_DIR​
DATA_DIR=$DATA_DIR​
LOGS_DIR=$LOGS_DIR​
EOF​
 ​
 # Docker Compose indítása​
 docker-compose pull​
 docker-compose up -d​
 ​
 # Várakozás az indulásra​
 sleep 10​
 ​
 # Health ellenőrzés​
 if docker-compose ps | grep -q "Up"; then​
 print_success "Szolgáltatások sikeresen elindítva"​
 else​
 print_error "Szolgáltatások indítása sikertelen"​
 docker-compose logs​
 exit 1​
 fi​
}​
​
Systemd service létrehozása (opcionális)​
create_systemd_service() {​
 print_status "Systemd szolgáltatás létrehozása..."​
 ​
 cat > /etc/systemd/system/kidmonitor.service << EOF​
[Unit]​
Description=KidMonitor Docker Compose Service​
Requires=docker.service​
After=docker.service​
​
[Service]​
Type=oneshot​
RemainAfterExit=yes​
WorkingDirectory=$INSTALL_DIR​

96

ExecStart=/usr/local/bin/docker-compose up -d​
ExecStop=/usr/local/bin/docker-compose down​
TimeoutStartSec=0​
​
[Install]​
WantedBy=multi-user.target​
EOF​
 ​
 systemctl daemon-reload​
 systemctl enable kidmonitor​
 ​
 print_success "Systemd szolgáltatás létrehozva és engedélyezve"​
}​
​
Telepítési összefoglaló​
installation_summary() {​
 print_success "🎉 KidMonitor telepítés sikeresen befejezve!"​
 echo​
 print_status "📋 Telepítési információk:"​
 echo " • Telepítési könyvtár: $INSTALL_DIR"​
 echo " • Konfigurációs könyvtár: $CONFIG_DIR"​
 echo " • Adatok könyvtára: $DATA_DIR"​
 echo " • Logok könyvtára: $LOGS_DIR"​
 echo " • Verzió: $VERSION"​
 echo​
 print_status "🔧 Következő lépések:"​
 echo " 1. Firebase credentials beállítása:"​
 echo " cp your-firebase-credentials.json $CONFIG_DIR/firebase-credentials.json"​
 echo​
 echo " 2. Konfiguráció szerkesztése:"​
 echo " nano $CONFIG_DIR/config.yaml"​
 echo​
 echo " 3. Szolgáltatás újraindítása:"​
 echo " cd $INSTALL_DIR && docker-compose restart"​
 echo​
 print_status "📊 Monitoring parancsok:"​
 echo " • Állapot ellenőrzése: docker-compose ps"​
 echo " • Logok megtekintése: docker-compose logs -f"​
 echo " • Újraindítás: docker-compose restart"​
}​
​
Főprogram​
main() {​

97

 print_status "KidMonitor Deployment Script kezdődik..."​
 ​
 check_prerequisites​
 create_directories​
 install_configuration​
 install_compose_file​
 start_services​
 create_systemd_service​
 installation_summary​
 ​
 print_success "Deployment befejezve!"​
}​
​
main "$@"

Kódrészlet 22. Flutter APK telepítési szkript

#!/bin/bash​
build_mobile.sh - Flutter mobile app build script​
​
cd mobile/kidmonitor​
​
Dependencies letöltése​
flutter pub get​
​
Build konfiguráció​
flutter build apk \​
 --release \​
 --build-name="1.0.0" \​
 --build-number=1 \​
 --target-platform android-arm,android-arm64,android-x64​
​
APK aláírása (production)​
if [[-f "android/app/kidmonitor-release-key.jks"]]; then​
 echo "APK aláírása..."​
 jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 \​
 -keystore android/app/kidmonitor-release-key.jks \​
 build/app/outputs/apk/release/app-release.apk \​
 kidmonitor-release-key​
 ​
 # APK optimalizálása​
 zipalign -v 4 \​
 build/app/outputs/apk/release/app-release.apk \​
 build/app/outputs/apk/release/kidmonitor-signed.apk​

98

fi​
​
echo "Flutter build befejezve: build/app/outputs/apk/release/"

Kódrészlet 23. Health monitoring szkript

Prometheus + Grafana integráció​
monitoring/docker-compose.monitoring.yml​
version: '3.8'​
​
services:​
 prometheus:​
 image: prom/prometheus:latest​
 container_name: kidmonitor-prometheus​
 ports:​
 - "9090:9090"​
 volumes:​
 - ./prometheus.yml:/etc/prometheus/prometheus.yml:ro​
 - prometheus_data:/prometheus​
 command:​
 - '--config.file=/etc/prometheus/prometheus.yml'​
 - '--storage.tsdb.path=/prometheus'​
 - '--web.console.libraries=/etc/prometheus/console_libraries'​
 - '--web.console.templates=/etc/prometheus/consoles'​
​
 grafana:​
 image: grafana/grafana:latest​
 container_name: kidmonitor-grafana​
 ports:​
 - "3000:3000"​
 environment:​
 - GF_SECURITY_ADMIN_PASSWORD=admin​
 volumes:​
 - grafana_data:/var/lib/grafana​
 - ./grafana/provisioning:/etc/grafana/provisioning:ro​
​
volumes:​
 prometheus_data:​
 grafana_data:

Kódrészlet 24. Health metrika szkript

Metrikák gyűjtése:​
// Backend metrikák exportálása​

99

package metrics​
​
import (​
 "github.com/prometheus/client_golang/prometheus"​
 "github.com/prometheus/client_golang/prometheus/promauto"​
)​
​
var (​
 // HTTP request metrikák​
 httpRequestsTotal = promauto.NewCounterVec(​
 prometheus.CounterOpts{​
 Name: "kidmonitor_http_requests_total",​
 Help: "Total number of HTTP requests",​
 },​
 []string{"method", "endpoint", "status"},​
)​
 ​
 // Ping metrikák​
 pingDuration = promauto.NewHistogramVec(​
 prometheus.HistogramOpts{​
 Name: "kidmonitor_ping_duration_seconds",​
 Help: "Ping duration in seconds",​
 },​
 []string{"target", "status"},​
)​
 ​
 // FCM notification metrikák​
 fcmNotificationsSent = promauto.NewCounterVec(​
 prometheus.CounterOpts{​
 Name: "kidmonitor_fcm_notifications_sent_total",​
 Help: "Total FCM notifications sent",​
 },​
 []string{"type", "status"},​
)​
 ​
 // Database query metrikák​
 dbQueryDuration = promauto.NewHistogramVec(​
 prometheus.HistogramOpts{​
 Name: "kidmonitor_db_query_duration_seconds",​
 Help: "Database query duration in seconds",​
 },​
 []string{"query_type"},​
)​

100

)

Kódrészlet 25. Logoláshoz szükséges konfiguráció

logging/docker-compose.logging.yml​
version: '3.8'​
​
services:​
 elasticsearch:​
 image: docker.elastic.co/elasticsearch/elasticsearch:8.11.0​
 container_name: kidmonitor-elasticsearch​
 environment:​
 - discovery.type=single-node​
 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"​
 - xpack.security.enabled=false​
 volumes:​
 - elasticsearch_data:/usr/share/elasticsearch/data​
 ports:​
 - "9200:9200"​
​
 logstash:​
 image: docker.elastic.co/logstash/logstash:8.11.0​
 container_name: kidmonitor-logstash​
 volumes:​
 - ./logstash/pipeline:/usr/share/logstash/pipeline:ro​
 - /var/log/kidmonitor:/var/log/kidmonitor:ro​
 ports:​
 - "5044:5044"​
 depends_on:​
 - elasticsearch​
​
 kibana:​
 image: docker.elastic.co/kibana/kibana:8.11.0​
 container_name: kidmonitor-kibana​
 ports:​
 - "5601:5601"​
 environment:​
 - ELASTICSEARCH_HOSTS=http://elasticsearch:9200​
 depends_on:​
 - elasticsearch​
​
volumes:​
 elasticsearch_data:

101

Kódrészlet 26. Backup szkript

#!/bin/bash​
backup.sh - KidMonitor backup script​
​
BACKUP_DIR="/backups/kidmonitor"​
DATA_DIR="/var/lib/kidmonitor"​
CONFIG_DIR="/etc/kidmonitor"​
DATE=$(date +"%Y%m%d_%H%M%S")​
BACKUP_NAME="kidmonitor_backup_$DATE"​
​
Backup könyvtár létrehozása​
mkdir -p "$BACKUP_DIR"​
​
SQLite adatbázis backup​
echo "Adatbázis backup..."​
sqlite3 "$DATA_DIR/kidmonitor.db" ".backup
$BACKUP_DIR/${BACKUP_NAME}_db.sqlite3"​
​
Konfiguráció backup​
echo "Konfiguráció backup..."​
tar -czf "$BACKUP_DIR/${BACKUP_NAME}_config.tar.gz" -C "$CONFIG_DIR" .​
​
Docker volumes backup​
echo "Docker volumes backup..."​
docker run --rm \​
 -v kidmonitor_data:/data:ro \​
 -v "$BACKUP_DIR":/backup \​
 alpine:latest \​
 tar -czf "/backup/${BACKUP_NAME}_volumes.tar.gz" -C /data .​
​
Régi backupok törlése (30 napnál régebbiek)​
find "$BACKUP_DIR" -name "kidmonitor_backup_*" -mtime +30 -delete​
​
echo "Backup befejezve: $BACKUP_DIR/${BACKUP_NAME}_*"

Kódrészlet 27. Restore szkript

#!/bin/bash​
restore.sh - KidMonitor helyreállítási script​
​
if [[$# -ne 1]]; then​
 echo "Használat: $0 <backup_timestamp>"​
 echo "Példa: $0 20250826_120000"​
 exit 1​

102

fi​
​
BACKUP_TIMESTAMP="$1"​
BACKUP_DIR="/backups/kidmonitor"​
BACKUP_NAME="kidmonitor_backup_$BACKUP_TIMESTAMP"​
​
Szolgáltatás leállítása​
echo "Szolgáltatás leállítása..."​
docker-compose down​
​
Adatbázis helyreállítása​
if [[-f "$BACKUP_DIR/${BACKUP_NAME}_db.sqlite3"]]; then​
 echo "Adatbázis helyreállítása..."​
 cp "$BACKUP_DIR/${BACKUP_NAME}_db.sqlite3"
"/var/lib/kidmonitor/kidmonitor.db"​
 chown 1001:1001 "/var/lib/kidmonitor/kidmonitor.db"​
fi​
​
Konfiguráció helyreállítása​
if [[-f "$BACKUP_DIR/${BACKUP_NAME}_config.tar.gz"]]; then​
 echo "Konfiguráció helyreállítása..."​
 tar -xzf "$BACKUP_DIR/${BACKUP_NAME}_config.tar.gz" -C "/etc/kidmonitor"​
fi​
​
Szolgáltatás újraindítása​
echo "Szolgáltatás újraindítása..."​
docker-compose up -d​
​
echo "Helyreállítás befejezve!"

Kódrészlet 28. Cron konfiguráció

/etc/cron.d/kidmonitor​
KidMonitor karbantartási feladatok​
​
Napi backup 2:00-kor​
0 2 * * * root /opt/kidmonitor/scripts/backup.sh​
​
Log rotáció hetente​
0 3 * * 0 root docker-compose -f /opt/kidmonitor/docker-compose.yml exec kidmonitor sh
-c "find /var/log/kidmonitor -name '*.log' -mtime +7 -delete"​
​
Database cleanup havonta​
0 1 1 * * root docker-compose -f /opt/kidmonitor/docker-compose.yml exec kidmonitor

103

kidmonitor cleanup --max-age 720h --config /etc/kidmonitor/config.yaml​
​
Docker system cleanup (image, container, volume cleanup)​
0 4 * * 1 root docker system prune -f --volumes --filter "until=168h"​
​
Health check report naponta​
0 8 * * * root /opt/kidmonitor/scripts/health-report.sh | mail -s "KidMonitor Daily Health
Report" admin@yourdomain.com

Kódrészlet 29. Docker frissítő szkript

#!/bin/bash​
update.sh - KidMonitor frissítési script​
​
CURRENT_VERSION=$(docker-compose ps kidmonitor --format "table {{.Image}}" |
tail -n1 | cut -d':' -f2)​
NEW_VERSION="$1"​
​
if [[-z "$NEW_VERSION"]]; then​
 echo "Használat: $0 <new_version>"​
 exit 1​
fi​
​
echo "Frissítés $CURRENT_VERSION -> $NEW_VERSION"​
​
Backup készítése frissítés előtt​
./backup.sh​
​
Új image letöltése​
docker-compose pull​
​
Rolling update​
docker-compose up -d --no-deps kidmonitor​
​
Health check​
sleep 30​
if docker-compose ps | grep kidmonitor | grep -q "Up"; then​
 echo "Frissítés sikeres!"​
 # Régi image törlése​
 docker image rm "kidmonitor:$CURRENT_VERSION" 2>/dev/null || true​
else​
 echo "Frissítés sikertelen, rollback..."​
 # Rollback előző verzióra​
 docker-compose down​

104

 sed -i "s/kidmonitor:$NEW_VERSION/kidmonitor:$CURRENT_VERSION/"
docker-compose.yml​
 docker-compose up -d​
fi

105

7.7 KidMonitor v1.0 - Felhasználói Dokumentáció

1. Bevezetés

Jelent dokumentum az alkalmazás felhasználói dokumentációját tartalmazza, aminek

segítségével telepíteni lehet a szerveroldali programot.

1.1 Mi a KidMonitor?

A KidMonitor egy családi eszközhasználat-monitorozó rendszer, amely lehetővé teszi a

szülők számára gyermekeik eszközhasználatának nyomon követését és időbeli korlátok

beállítását. A rendszer ping alapú hálózati monitorozással és Firebase Cloud Messaging

(FCM) push értesítésekkel működik.

1.2 Főbb funkciók

●​ Valós idejű eszközmonitorozás - 10 másodpercenkénti állapot ellenőrzés

●​ Időkorlátok kezelése - Napi és heti eszközhasználati határidők beállítása

●​ Push értesítések - Azonnali értesítések mobiltelefonon keresztül

●​ Kétszintű riasztások - WARNING (10 perccel a határidő előtt) és CRITICAL

(határidő után)

●​ Webes adminisztrációs felület - Böngészőből elérhető beállítások és statisztikák

●​ Részletes naplózás - Használati statisztikák és események nyomon követése

1.3 Célközönség

Ez a dokumentáció a következő felhasználói csoportoknak készült:

●​ Szülők - akik a rendszert napi használatra telepítik

●​ Rendszergazdák - akik a technikai telepítést és karbantartást végzik

●​ Fejlesztők - akik a rendszert szeretnék kibővíteni vagy integrálni

2. Rendszerkövetelmények

Minimális konfiguráció:

106

●​ Linux operációs rendszer (Ubuntu 20.04+, Debian 11+)

●​ 1 CPU mag, 512 MB RAM, 2 GB tárhely

●​ Hálózati kapcsolat és internet hozzáférés

Ajánlott konfiguráció:

●​ Ubuntu 22.04 LTS vagy újabb

●​ 2+ CPU mag, 2 GB+ RAM, 10 GB+ SSD tárhely

●​ Gigabit Ethernet kapcsolat

Részletes technikai követelményeket lásd a dolgozat 3.18.1 Platformfüggetlen környezet

előállítása fejezetében.

2.1 Hálózati környezet

●​ Összes monitorozott eszköznek ugyanazon a helyi hálózaton kell lennie

●​ Internet hozzáférés szükséges az FCM szolgáltatáshoz

●​ ICMP ping támogatás (root jogosultság szükséges)

2.2 Mobiltelefon követelmények

●​ Android 7.0+ (API level 24+)

●​ Google Play Services FCM értesítésekhez

●​ Minimum 2 GB RAM, aktív internet kapcsolat

3. Telepítés és Kezdeti Beállítás

A KidMonitor telepítése három fő lépésből áll:

1.​ Backend szerver telepítése - Go alkalmazás és szolgáltatások beállítása

2.​ Firebase konfiguráció - Cloud Messaging szolgáltatás beállítása

3.​ Mobilalkalmazás telepítése - Android APK telepítés és regisztráció

Részletes telepítési útmutatót lásd a dolgozat 3.18. Telepítés és üzembe helyezés fejezetében.

3.1 Docker alapú telepítés

107

A rendszer Docker konténerekben is futtatható, amely egyszerűsíti a telepítést és biztosítja a

platformfüggetlenséget.

Docker telepítési útmutatót lásd a 3.18.1 Backend csomagolása Docker konténerbe részben.

3.2 Automatizált telepítő script

A projekt tartalmaz automatizált telepítő script-et, amely elvégzi az összes szükséges

konfigurációt.

Az automatizált telepítés leírását lásd a 3.18.3 Deployment folyamat fejezetben.

4. Konfigurációs Útmutató

A rendszer konfigurációja YAML formátumú fájlban történik, amely a következő fő

területeket foglalja magában:

●​ Szerver beállítások - Port, IP cím, admin felület

●​ Adatbázis konfiguráció - SQLite3 kapcsolat beállítások

●​ Firebase integráció - FCM szolgáltatás paraméterei

●​ Monitorozási beállítások - Ping intervallum, timeout értékek

●​ Biztonsági beállítások - HTTPS, IP korlátozások

Részletes konfigurációs leírást lásd a 3.18.2 Éles környezet kialakítása fejezetben.

4.1 Felhasználók és eszközök beállítása

A kezdeti felhasználók, eszközök és határidők a konfigurációs fájlban definiálhatók, amelyek

az első indításkor automatikusan létrejönnek az adatbázisban.

4.2 Biztonsági konfiguráció

A rendszer többrétegű biztonsági védelem beállítására nyújt lehetőséget:

●​ IP cím alapú hozzáférés korlátozás

●​ HTTPS titkosítás opcionális támogatása

●​ Tűzfal szabályok konfigurálása

108

Biztonsági beállításokat lásd a 3.10 Biztonsági tervezés fejezetben.

5. Adminisztrátori Felület Használata

Az adminisztrátori felület böngészőből érhető el a szerver IP címén keresztül

(alapértelmezetten 8080-as port). A felület REST API-n keresztül kommunikál a backend

szolgáltatással.

5.1 Főbb funkciók

Rendszer állapot monitorozás:

●​ Szolgáltatások állapotának ellenőrzése

●​ Eszközök online/offline státusza

●​ Rendszer statisztikák megtekintése

Eseménynaplók:

●​ Ping eredmények megtekintése

●​ Értesítési történet

●​ Hibák és figyelmeztetések

5.2 API végpontok

A rendszer REST API végpontokat biztosít külső integrációkhoz és automation célokra.

Az API dokumentációt lásd a 3.16.1 REST API tervezés fejezetben.

6. Mobilalkalmazás Használata

A Flutter alapú Android alkalmazás APK fájlként érhető el telepítésre. Az alkalmazás

automatikusan regisztrálja magát a backend szolgáltatásnál FCM token segítségével.

Mobilalkalmazás fejlesztését és telepítését lásd a 3.14. Flutter mobilalkalmazás fejlesztés

fejezetben.

6.1 Értesítések fogadása

109

Az alkalmazás két típusú értesítést fogad:

WARNING értesítések (sárga):

●​ 10 perccel az időkorlát lejárta előtt

●​ Figyelmeztető jellegű, mérsékelt prioritás

CRITICAL értesítések (piros):

●​ Az időkorlát lejárata után

●​ Magas prioritású, azonnali beavatkozást igénylő

6.2 Felhasználói felület

Az alkalmazás minimalista dizájnnal rendelkezik:

●​ Indítóképernyő logóval

●​ Verzióinformáció megjelenítése

●​ Értesítések listája időrendi sorrendben

●​ Egyszerű beállítási lehetőségek

7. Monitoring és Értesítések

A rendszer 10 másodpercenkénti ICMP ping üzenetekkel ellenőrzi a regisztrált eszközök

elérhetőségét. Az eszközök állapotai:

●​ Online - Eszköz válaszol a ping-re

●​ Offline - Eszköz nem érhető el (timeout)

7.1 Határidő ellenőrzés

A rendszer folyamatosan ellenőrzi a beállított időkorlátokat és az eszközök aktuális állapotát.

Az értesítések küldése automatikusan történik:

1.​ WARNING fázis - 10 perccel a határidő előtt

2.​ CRITICAL fázis - A határidő lejárta után

7.2 Értesítési logika

110

Az értesítések csak akkor kerülnek elküldésre, ha:

●​ Az eszköz online állapotban van

●​ A beállított időkeret aktív

●​ Nem történt már értesítés küldés az adott időszakban (duplikáció védelem)

Az értesítési folyamat részletes leírását lásd a 3.13.7 Határidő ellenőrző rendszer fejezetben.

8. Hibaelhárítás

Ping nem működik:

●​ Ellenőrizze a hálózati kapcsolatot

●​ Győződjön meg róla, hogy a szolgáltatás root jogosultságokkal fut

●​ Hálózati tűzfal beállítások ellenőrzése

FCM értesítések nem érkeznek:

●​ Firebase konfiguráció ellenőrzése

●​ Internet kapcsolat tesztelése

●​ FCM token regisztráció státusza

Adatbázis hibák:

●​ Adatbázis fájl jogosultságainak ellenőrzése

●​ Szabad tárhely ellenőrzése

●​ SQLite adatbázis integritás teszt

8.1 Logfájlok

A rendszer részletes naplózást végez, amely segít a problémák diagnosztizálásában:

●​ Alkalmazás logok: /var/log/kidmonitor/kidmonitor.log

●​ Systemd szolgáltatás logok: journalctl -u kidmonitor

8.2 Debug mód

111

A rendszer debug módban történő futtatása részletesebb információkat nyújt a

hibaelhárításhoz.

Részletes hibaelhárítási útmutatót lásd a 3.18.4 Monitoring és karbantartás fejezetben.

9. Gyakori Kérdések FAQ

Q: Hány eszközt képes monitorozni a rendszer? A: A jelenlegi implementáció maximum 100

eszköz egyidejű kezelésére képes.

Q: Milyen adatokat tárol a rendszer? A: A rendszer csak a monitorozáshoz szükséges

minimális adatokat gyűjti: IP/MAC címek, ping eredmények, értesítési események.

Q: A rendszer működik-e iOS eszközökkel? A: Jelenleg csak Android mobilalkalmazás áll

rendelkezésre, de az iOS eszközök ping alapú monitorozása működik.

Q: Szükséges-e internet kapcsolat a működéshez? A: Az FCM értesítésekhez igen, de a helyi

monitorozás offline is működik.

Q: Módosítható-e a ping gyakoriság? A: Igen, a konfigurációs fájlban a ping_interval

paraméterrel beállítható.

Q: Hogyan lehet biztonsági mentést készíteni? A: A SQLite adatbázis fájl és a konfigurációs

állományok rendszeres mentése javasolt.

Q: GDPR kompatibilis-e a rendszer? A: Igen, a rendszer minimális adatgyűjtéssel és helyi

adattárolással GDPR-kompatibilis módon működik.

GDPR megfelelőségről lásd a 3.19.5 GDPR megfelelőség fejezetet.

10. Támogatás

●​ Forráskód: GitHub repository

●​ Issue tracking: GitHub Issues

●​ Fejlesztői dokumentáció: README.md és kódkommentek

●​ GitHub Discussions platform használata kérdések és válaszok megosztására

●​ Community wiki fejlesztése közösségi hozzájárulásokkal

112

●​ A projekt jelenlegi formájában nyílt forráskódú és ingyenes. Kereskedelmi támogatás

és fejlesztés igény szerint elérhető.

10.1 Hozzájárulás a projekthez

A projekt nyílt forráskódú és szívesen fogad közösségi hozzájárulásokat:

●​ Bug jelentések és javítások

●​ Új funkciók fejlesztése

●​ Dokumentáció fejlesztés és fordítások

●​ Tesztelés különböző környezetekben

Részletes fejlesztői útmutatót és hozzájárulási guidelines-t lásd a projekt README.md

fájljában.

Verzió információk

KidMonitor v1.0

●​ Első stabil kiadás

●​ Alapvető monitorozási és értesítési funkciók

●​ SQLite3 adatbázis támogatás

●​ Firebase Cloud Messaging integráció

●​ Android mobilalkalmazás

Készítette: Kovács János​

 Kapcsolat: kovacs213janos@kidmonitor.com​

 Licenc: MIT License​

 Utolsó frissítés: 2025. augusztus

Ez a dokumentáció a KidMonitor v1.0 szakdolgozat projekt része. További technikai

részletekért lásd a teljes szakdolgozat dokumentációt.

113

7.8 LLM-konverziók részletei

A mesterséges intelligencia, különösen a nagy nyelvi modellek (LLM-ek)

alkalmazása a szoftverfejlesztési életciklusban egyre inkább előtérbe kerül. A képzés

kifejezetten elvárja ezen eszközök használatát, nem csupán szöveggenerálásra, hanem a

fejlesztési folyamat aktív segítőjeként is.

A mesterséges intelligencia, különösen a nagy nyelvi modellek alkalmazása a képzés

kötelező eleme, azonban ez nem jelenti az általuk generált tartalom kritika nélküli

elfogadását. A fejlesztőnek tisztában kell lennie az ezen eszközök használatával járó

kockázatokkal, különösen a "hallucináció" jelenségével. Egy másik, a témában mélyebben

elmerülő KJE szakdolgozat is felhívja erre a figyelmet: "A hallucináció jelensége alatt azt

értjük, amikor a nyelvi modell meggyőzően hangzó, de valótlan vagy alaptalan információt

ad ki. [...] A LLM egyszerűen “kitalál” valamit – például egy nem létező tényt, hamis

hivatkozást, valótlan eseményt – anélkül, hogy tudatában lenne tévedésének." (Kovács,

2025). Ezen kockázatok tudatában, jelen projekt során két vezető modellcsaládot

alkalmaztam párhuzamosan: az Anthropic Claude és a Google Gemini modelljeit.

A fejlesztés 2024 szeptemberében kezdődött. Ebben az időszakban az LLM-ek

"front-end" modelljei az Anthropic Claude 3.5 Sonnet és a Google Gemini 1.5 Pro voltak.

Már ekkor jelentős különbség volt tapasztalható a két modell között: a Claude 3.5 Sonnet

kiemelkedő volt a koherens, árnyalt szöveggenerálásban és a kreatív kódolási feladatokban,

míg a Gemini 1.5 Pro a jelentős méretű, 1 millió tokenes kontextusablakával tűnt ki, amely

lehetővé tette extrém nagy dokumentumok vagy kódbázisok egyidejű elemzését.

A szakdolgozat írásának egy éve (2024 ősze - 2025 ősze) egybeesett az LLM-ek

eddigi leggyorsabb evolúciós időszakával. A fejlődés három fő területen volt nyomon

követhető:

1. A Kontextusablak drámai növekedése és a multimodalitás: Míg 2024 elején a modellek

néhány tíz- vagy százezer tokenes kontextussal dolgoztak, 2025-re a Gemini és a Claude

modelljei is elérték a többmillió tokenes (Gemini) vagy a rendkívül gyors, nagy kontextusú

(Claude) feldolgozást. Ez a gyakorlatban azt jelentette, hogy míg a munka elején csak

egy-egy kódrészletet vagy fejezetet tudtam megvitatni a modellel, a munka végére képessé

váltak a teljes szakdolgozat-tervezetet egyben elemezni, összevetve azt az összes csatolt

követelményfájllal. Ez a képesség tette lehetővé az olyan mélyen rejlő hibák azonosítását,

114

mint például a "garancia" és "felelősség" kulcsszavak hiánya, vagy a hiányzó kötelező

nyilatkozatok észlelése.

2. Integráció és Cselekvőképesség: A legnagyobb változás a "chatbottól" az "integrált

asszisztensig" tartó út volt. 2024-ben a munkafolyamat még "másold-be a kódot, másold-ki a

választ" jellegű volt. 2025-re mindkét modellcsalád szorosan integrálódott a fejlesztői és

felhő-környezetekbe. A felhasználói felületen már nemcsak szöveget generáltak, hanem

futtatható kódblokkokat, sőt, a Claude esetében interaktív UI-elemeket is. A Gemini esetében

a Google Drive integráció (amelyet a felhasználói felületem is mutat) kulcsfontosságú volt:

az LLM képessé vált arra, hogy valós időben hozzáférjen a Google Drive-omon tárolt

egyetemi követelményekhez, és azokat alapul véve tegyen javaslatokat, vagy akár módosítsa

a dolgozat szövegét a böngészőben.

3. Modell-evolúció és specializáció: A munka befejezéséig, 2025 őszére, az Anthropic kiadta

a Claude 4-es szériáját, a Google pedig a Gemini 2.0 szériát. A modellek specializálódtak:

●​ Claude Opus (4.x): A "nehézsúlyú" elemző modell maradt, amelyet a 4. Vita és 5.

Következtetések fejezetek komplex, önkritikus szövegeinek megfogalmazásához,

valamint a rendszertervezési kompromisszumok kidolgozásához használtam.

●​ Gemini (2.x Pro/Ultra): A "technikai mindenes" szerepét töltötte be. Ezt használtam a

Flutter/Dart kód komplex refaktorálására, a háttérfolyamatok Android-specifikus

optimalizálására, a Docker-fájlok hibakeresésére és a nagy kontextusablak miatt a

teljes projekt átfogó elemzésére.

●​ Claude Sonnet (4.x) / Gemini Flash: A gyors, "mindennapi" modelleket a

kód-dokumentáció írására, tesztesetek generálására és a Felhasználói Dokumentáció

szövegezésére alkalmaztam.

Összességében az LLM-ek a szakdolgozatírás egy éve alatt egyszerű szöveggenerátorokból

komplex, integrált fejlesztési partnerekké váltak, amelyek nélkül a projekt ilyen mélységű

kidolgozása lényegesen több időt vett volna igénybe.

115

116

	1. Bevezetés
	1.1 Probléma
	1.2 Célok
	1.3 Motiváció
	1.4 Dolgozat felépítése
	1.5 Módszertan
	1.6 Célcsoportok
	1.7 Hasznosság

	2. Szakirodalom feldolgozása
	2.1 A jog szerepe a modern társadalmakban
	2.2 Adatbázisok
	2.3 Adatszerkezetek és algoritmusok
	2.4 Az elektronika fizikai alapjai
	2.5 Elektronikus áramkörök
	2.6 Emberi viselkedés és kommunikáció
	2.7 Európai civilizáció és identitás
	2.8 Felhasználói interfészek és vizualizáció
	2.9 Hálózatok és számítógép architektúrák
	2.10 Informatikai védelem és biztonság
	2.11 Komplex társadalomtudományi ismeretek
	2.12 Matematikai alapok
	2.13 Operációs rendszerek
	2.14 Programozás
	2.15 Programozási alapelvek és módszertanok
	2.16 Rendszermodellezés
	2.17 Rendszertervezés
	2.18 Szoftverarchitektúrák
	2.19 Szoftvertesztelés
	2.20 Szoftverüzemeltetés
	2.21 Vállalati gazdaságtan
	2.22 Vezetési és vállalkozási ismeretek
	2.23 Innovatív információs és kommunikációs technológiák az IT-biztonság kapcsán
	2.24 IT-biztonsági fejlesztések minőség- és projektmenedzsmentje
	2.25 Mesterséges intelligenciák az IT-biztonság területén
	2.26 Tudásmenedzsment az IT-biztonság területén
	2.27 Mobil-alkalmazásfejlesztési Metodológiák Fejlődése
	2.28 Az Eszközmonitorozás és Szülői Felügyelet Története
	2.29 A saját üzemeltetésű és Nyílt Forráskódú Alternatívák Szerepe

	
	3. A KidMonitor rendszer megvalósítása
	3.1 Követelmények meghatározása és elemzése
	3.2 Részletes igényfelmérés a valós felhasználókkal
	3.3 Funkcionális és nem-funkcionális követelmények összeállítása
	3.3.1 Használati esetek meghatározása a backend és a mobil alkalmazás számára
	3.3.2 Különböző felhasználói szerepek és jogosultságok meghatározása

	3.4 Kizárások, korlátozások
	3.5 Alternatív igények felmérése
	3.6 Rendszer és Architektúra tervezés
	3.7 Verziókezelés
	3.8 Objektum Modell és UML diagramok
	3.9 Adatbázis tervezés
	3.9.1 Normalizálás folyamata
	3.9.2 SQL tábla szerkezetek

	3.10 Biztonsági tervezés
	3.11 Backend alkalmazás tervezése Go-ban
	3.12 Mobilalkalmazás tervezése
	3.13 Implementáció és fejlesztés
	3.13.1 Fejlesztés mérföldkövek
	3.13.2 Backend implementáció
	
	3.13.3 Projekt struktúra és szervezés
	3.13.4 Adatbázis réteg implementációja
	3.13.5 Ping monitorozó rendszer
	3.13.6 Firebase Cloud Messaging integráció
	3.13.7 Határidő ellenőrző rendszer

	3.14 Mobilalkalmazás implementáció
	3.14.1 Firebase konfiguráció és dinamikus betöltés
	3.14.2 Notification handling és channel management
	3.14.3 Felhasználói interfész

	3.15 Adatbázis implementáció
	3.15.1 Adatmodell implementáció
	3.15.2 Indexelési stratégia

	3.16 Integráció és összeköttetés
	3.16.1 API endpoints és kommunikáció
	3.16.2 Error handling és resilience
	3.16.3 Configuration management

	3.17 Tesztelés és validáció
	3.17.1 Tesztelési stratégia
	3.17.2 Backend Unit Tesztek
	3.17.3 Integrációs Tesztek
	3.17.4 Rendszertesztek
	3.17.5 Flutter Mobile App Tesztek
	3.17.6 Teljesítmény és biztonsági tesztek

	3.18 Telepítés és üzembe helyezés
	3.18.1 Platformfüggetlen környezet előállítása
	
	3.18.2 Éles környezet kialakítása
	3.18.3 Deployment folyamat
	3.18.4 Monitoring és karbantartás

	3.19 Eredmények és értékelés
	3.19.1 Adatgyűjtés és elemzés
	3.19.2 Információs többletérték elemzés
	3.19.3 Minőségbiztosítás és ellenőrzés
	3.19.4 Kockázatelemzés
	3.19.5 GDPR megfelelőség

	4. Vita
	5. Következtetések
	6. Összefoglalás
	6.1 Eredmények összegzése
	6.2 Célok teljesülése
	6.3 Tanulságok és tapasztalatok
	6.4 Jövőbeli fejlesztési lehetőségek
	6.5 Executive Summary

	7. Mellékletek
	7.1 Irodalomjegyzék
	
	7.2 Rövidítések jegyzéke
	
	7.3 Ábrák jegyzéke
	
	7.4 Táblázatok jegyzéke
	
	7.5 Definíciók jegyzéke
	
	7.6 Forráskód részletek
	7.7 KidMonitor v1.0 - Felhasználói Dokumentáció
	7.8 LLM-konverziók részletei

