Esettanulmány
1. Példa: A "Helyi mappa" tévút (Forrás: RMS6VC_A.docx)
Prompt: "Kérlek készíts egy egy darab Excel VBA makrót, amely az alábbiakat csinálja: A makró egy meglévő, már makróbarát formátumban (.xlsm) mentett munkafüzetben fog futni. A makró futtatásakor a felhasználótól kérje be egy mappának az elérési útját, ahol több darab .csv állomány található (pl. egy szerveren a könyvtárban 01.csv – 10.csv fájlok). [...]"
Output:
VBA
Sub CountCsvRowsInFolder()
 Dim fd As FileDialog
 Dim folderPath As String
 ' ...
 Set fd = Application.FileDialog(msoFileDialogFolderPicker)
 With fd
 .Title = "Válaszd ki a CSV fájlokat tartalmazó mappát"
 If .Show <> -1 Then
 MsgBox "Nem választottál mappát. A makró leáll.", vbInformation
 Exit Sub
 End If
 folderPath = .SelectedItems(1)
 End With
 ' ...
 fileName = Dir(folderPath & "*.csv")
 ' ...
End Sub

2. Példa: A "Platform tévesztés" (Google Sheets) (Forrás: RPJDP5_A.docx)
Prompt: "Write a Google Sheets macro that checks a directory (html site) that only contains csv files (*.csv) and outputs each csv with how many lines they contain next to their names in a single *.xlsm file."
Output:
JavaScript
function listCsvLineCounts() {
 const sheet = SpreadsheetApp.getActiveSpreadsheet().getActiveSheet();
 sheet.clear();
 // ...
 const directoryUrl = "https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/";
 const response = UrlFetchApp.fetch(directoryUrl);
 // ...
}

3. Példa: A "Mac-specifikus" megoldás (Forrás: r4j7jd_A.docx)
Prompt: "Excel VBA Mac: Készíts FOR CIKLUST 1-től 10-ig, minden iterációban tölts le EGY-EGY CSV fájlt [...] LETÖLTÉS MacScript-tel: csvContent = MacScript("do shell script ""curl -s 'URL'""") [...]"
Output:
VBA
Sub LetoltEsSzamolCsvSorok()
 ' ...
 For i = 1 To 10
 fileName = Format(i, "00") & ".csv"
 url = "https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/" & fileName

 ' Letöltés MacScript-tel (curl -s: silent mód)
 csvContent = MacScript("do shell script ""curl -s '" & url & "'""")
 ' ...
 Next i
 ' ...
End Sub

4. Példa: A "LibreOffice" keveredés (Forrás: TD78WU_A.docx)
Prompt: "[...] Feltárandó csak és kizárólag egyetlen egy LibreOffice makró segítségével, hogy csv-állományonként hány sor van. [...]"
Output:
VBA
Sub CsvSorokSzama_TavoliKonyvtar()
 ' ...
 oDoc = ThisComponent
 oSheet = oDoc.Sheets(0)
 ' ...
 oHttp = CreateObject("MSXML2.XMLHTTP") ' Hiba: Windows-specifikus hívás LibreOffice-ban
 ' ...
End Sub

5. Példa: A NYERTES, optimális megoldás (Forrás: R2J8M4_A.docx)
Prompt: "Egyetlen Excel VBA makrót szeretnék kérni. [...] Töltse le a könyvtár HTML-listáját. A HTML-ből automatikusan gyűjtse ki az összes .csv kiterjesztésű fájl nevét [...] Minden megtalált .csv fájlt HTTP GET kéréssel töltse le (nem kell lemezre menteni, elég memóriában). [...]"
Output:
VBA
Option Explicit
Sub CountCsvRowsFromServer()
 ' ...
 Set http = CreateObject("MSXML2.ServerXMLHTTP.6.0")
 http.Open "GET", baseUrl, False
 http.send
 ' ...
 ' HTML parsing és In-Memory feldolgozás
 content = httpFile.responseText
 ' ...
 lines = Split(content, vbLf)
 ' ...
End Sub
Konklúzió
A legjobb prompt szövege (az R2J8M4_A.docx alapján): "Egyetlen Excel VBA makrót szeretnék kérni. A makró feladata a következő:
· A következő URL-en elérhető könyvtárból: 'https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/' töltse le a könyvtár HTML-listáját.
· A HTML-ből automatikusan gyűjtse ki az összes .csv kiterjesztésű fájl nevét (href attribútumok alapján).
· Minden megtalált .csv fájlt HTTP GET kéréssel töltse le (nem kell lemezre menteni, elég memóriában).
· Fájlonként számolja meg a benne található sorok számát.
· A megoldás egyetlen Sub eljárás legyen, a HTTP kérésekhez késői kötést használj (CreateObject('MSXML2.XMLHTTP'))."
Az idealitás indoklása az LLM-támogatás alapján: A feltöltött esetek összehasonlító elemzése egyértelműen megmutatta, hogy a R2J8M4 fájlban található prompt eredményezte a legrobusztusabb és legpontosabb kódot. A döntés indokai:
1. Platform és Környezet Pontosítása: Az RPJDP5 (Google Sheets) és TD78WU (LibreOffice) példák megmutatták, hogy ha nem rögzítjük szigorúan a "Microsoft Excel VBA" környezetet, az LLM más nyelveken generál kódot, amelyek Excelben nem futtathatók. A nyertes prompt explicit módon VBA-t kér.
2. Adatforrás Kezelése (Web vs. Lokális): Az RMS6VC példája demonstrálta a leggyakoribb hibát: a promptban szereplő "mappa" kifejezésre az LLM FileDialog-ot (helyi mappaválasztót) generált, ami webes adatbányászatnál használhatatlan. A nyertes prompt (R2J8M4) konkrétan előírja a "HTTP GET kérést" és a "HTML-lista letöltését", így a kód helyesen a webről dolgozik.
3. Hatékonyság (Memória vs. Háttértár): Míg más megoldások (pl. SOKHZY, nem listázva fennebb, de elemezve) a fájlrendszerre mentették a CSV-ket (URLDownloadToFile), addig a nyertes prompt kifejezetten kéri a "memóriában" történő feldolgozást. Ez nagyságrendekkel gyorsabb futást eredményez és elkerüli a fájlrendszer-jogosultsági hibákat.
4. Operációs Rendszer Függőség: Az r4j7jd példája rámutatott, hogy Mac környezetben teljesen más (curl, MacScript) parancsok kellenek. Mivel a feladat alapértelmezett környezete Windows/Excel, a nyertes promptban az MSXML2.XMLHTTP előírása biztosítja a standard Windows-os működést, kizárva a platform-specifikus (Mac) vagy elavult (Internet Explorer automation) megoldásokat.

