Jogos a kérdés.

B-szálon a K6 hatékonyság nem önmagában a prompt hosszát méri, hanem azt,
hogy a prompt hossza és szerkezete *milyen megoldási teret kényszerít ki*.

Egy rövidebb prompt akkor tekinthető hatékonyabbnak, ha *explicit módon
kizárja* a perzisztens I/O-t és egyértelmű, memórián belüli feldolgozást ír
elő. Egy hosszabb prompt viszont akkor válik hatékonyságrombolóvá, ha
redundáns lépésekkel, Excel-/fájl-orientált instrukciókkal tágítja a
megoldási teret. A K6 tehát *nem karakterhossz-függvény*, hanem a prompt
által meghatározott feldolgozási út komplexitását értékeli.

Az LLM szerepe ebben a feladatban nem a „helyes” mérés elvégzése, hanem
hipotézisgenerálás: mintázatok javaslata arra, hogy a prompt-szövegek
mely elemei utalhatnak hatékonyságromboló vagy -javító megoldási
kényszerekre. Ezek a minták kerültek algoritmizálásra és manuálisan
ellenőrzött mintákon validálásra.

Amíg nincs teljes manuális referencia a ca. 60 prompt részletes
feldolgozására, az LLM *nem helyettesít*, hanem strukturálja a keresési
teret és csökkenti a kézi elemzés költségét.
Nincs is prompt.txt, csak “.txt_”!
Csak egyetlen egy (a legjobbnak tűnő) prompt.txt kell…
Vajon ennek a definíciónak mi köze van egy hosszabb/rövidebb prompt-szöveghez?
(A K6 hatékonyság azt méri, hogy a szövegfeldolgozó megoldás mennyire csökkenti a perzisztens I/O-t és a külső állapotfüggőséget, illetve mennyire rövid az adatút. A memórián belüli, szöveg-alapú feldolgozás hatékonyabb, míg az Excel-megnyitás jellegű lépések hatékonyságromlást jelentenek.)
Vö. B-szál = prompt-fókusz, D1-szál = macro-fókusz
(SP5 kihívás érvényes mindenhol)

Amíg manuálisan NINCS demo arra, mit is kell automatizálni a prompt-szövegek feldolgozásán (K6) a ca. 60 érték levezetését illetően, addig mire jó az LLM egyáltalán?
Esettanulmány
Prompt:
Készíts egy Python scriptet, ami a megadott webes könyvtár(ak)ból automatikusan összegyűjti a prompt*.txt objektumok (B-szál) fájlokat, memóriában kiolvassa a szövegüket, és a K6 Haték. kritérium szerint 0–2 skálán pontozza őket (2=memóriás/text alapú; 0=Excelben megnyitás; 1=semleges/vegyes). A script adjon OAM (objektum–attribútum mátrix) kimenetet (objektum→K6), és 3–4 objektumon manuális ellenőrzést (idézet+kiemelés).
Output:
ROOT = https://miau.my-x.hu/miau/329/prompt_plan_ranking/
Objektumok: prompt*.txt objektumok (B-szál)
OAM = objektum–attribútum mátrix: sor = objektum (.txt), attribútum = K6.
K6 operacionalizáció: 2=memóriás/text nyomok; 0=Excel megnyitás nyomok; 1=vegyes/nem dönthető.
Hatékonyság (K6) definíciója
A K6 hatékonyság azt méri, hogy a szövegfeldolgozó megoldás mennyire csökkenti a perzisztens I/O-t és a külső állapotfüggőséget, illetve mennyire rövid az adatút. A memórián belüli, szöveg-alapú feldolgozás hatékonyabb, míg az Excel-megnyitás jellegű lépések hatékonyságromlást jelentenek.
OAM (objektum–attribútum mátrix) – K6 mérési eredmények
	Objektum (.txt)
	K6
	Bizonyíték: Excel
	Bizonyíték: memória/text

	prompt(6).txt_
	1
	Workbooks.Open;Excel open
	responseText;getContentText;UrlFetchApp.fetch;split(;stream;HTML parse

	prompt_.txt_
	1
	Workbooks.Open;Excel open
	HTML parse

	prompt_58.txt_
	1
	Workbooks.Open;Excel open
	responseText;getContentText;UrlFetchApp.fetch;split(;stream;HTML parse

	prompt__.txt_
	1
	
	

	prompt_demo.txt_
	1
	
	

	prompt_done.txt_
	1
	Workbooks.Open;Excel open
	HTML parse

	prompt_sp3hoz.txt_
	1
	Workbooks.Open;Excel open
	getContentText;UrlFetchApp.fetch;split(;HTML parse

	prompt_hm.txt_
	2
	
	HTML parse

Manuális teszt (3–4 objektum) – idézet + kiemelés
Piros: Excel; Zöld: memória/text bizonyíték. A kiemelés a manuális ellenőrzést támogatja.
Objektum: prompt(6).txt_ | Algoritmus K6: 1
Forrás: https://miau.my-x.hu/miau/329/prompt_plan_ranking/b-gondolatkiserletek/prompt(6).txt_
O(1) = "Promt:\nírj egy makrót melyel egy tetszőleges könyvtárban található *.csv állományok sorait meg tudod számolni és ezt egy *.xlsm állományba el tudod menteni ami tárolja a *.csv állományok neveit, és azok sorainak számát\nReply:\nÍme egy teljesen működő, helyi könyvtárra írt VBA makró, amely:\nvégigmegy egy általad megadott mappán,\nmegszámolja az összes .csv fájl sorainak számát,\neredményt egy új .xlsm fájlba menti:\n\noszlop: fájlnév\n\noszlop: sorok száma\nA makró mindent automatikusan csinál.\n\n✅ VBA makró – CSV sorok számlálása + XLSM mentés\nHasználat:\nExcel → ALT + F11\nInsert → Module\nMásold be:\nSub CountCsvLines_SaveToXlsm()\n\n Dim folderPath As String\n Dim fileName As String\n Dim lineCount As Long\n Dim f As Integer\n Dim line As String\n Dim resultWb As Workbook\n Dim resultWs As Worksheet\n Dim row As Long\n\n ' >>>>>> MÓDOSÍTSD <<<——\n ' A mappa, ahol a CSV fájlok vannak (példa):\n ' folderPath = \"C:\Adatok\CSV\\"\n folderPath = InputBox(\"Add meg a könyvtár teljes elérési útját:\" & vbCrLf & _\n \"(pl. C:\Adatok\CSV\)\", \"CSV mappa kiválasztása\")\n \n If folderPath = \"\" Then\n MsgBox \"A folyamat megszakítva.\", vbExclamation\n Exit Sub\n End If\n \n If Right(folderPath, 1) <> \"\\" Then folderPath = folderPath & \"\\"\n \n \n ' Eredmény munkafüzet létrehozása\n Set resultWb = Workbooks.Add\n Set resultWs = resultWb.Sheets(1)\n \n resultWs.Cells(1, 1).Value = \"Fájlnév\"\n resultWs.Cells(1, 2).Value = \"Sorok száma\"\n \n row = 2\n \n ' Első CSV fájl beolvasása\n fileName = Dir(folderPath & \"*.csv\")\n \n If fileName = \"\" Then\n MsgBox \"A mappában nem található .csv fájl!\", vbExclamation\n Exit Sub\n End If\n \n ' CSV fájlok feldolgozása\n Do While fileName <> \"\"\n \n lineCount = 0\n f = FreeFile\n \n Open folderPath & fileName For Input As #f\n \n Do While Not EOF(f)\n Line Input #f, line\n lineCount = lineCount + 1\n Loop\n \n Close #f\n \n ' Kiírás Excelbe\n resultWs.Cells(row, 1).Value = fileName\n resultWs.Cells(row, 2).Value = lineCount\n \n row = row + 1\n fileName = Dir()\n \n Loop\n \n ' XLSM mentése ugyanabba a mappába\n Dim savePath As String\n savePath = folderPath & \"csv_sorok_szama.xlsm\"\n \n resultWb.SaveAs Filename:=savePath, _\n FileFormat:=xlOpenXMLWorkbookMacroEnabled\n \n MsgBox \"Kész! Az eredmények mentve:\" & vbCrLf & savePath, vbInformation\n\nEnd Sub\n\n📌 Mit tud ez a makró?\n✔ Tetszőleges könyvtárból dolgozik (InputBox-szal megadod)\n✔ Minden CSV-t felolvas\n✔ Sorokat számol\n✔ Új Excel
Manuális megjegyzés: ________________________________
Objektum: prompt_.txt_ | Algoritmus K6: 1
Forrás: https://miau.my-x.hu/miau/329/prompt_plan_ranking/b-gondolatkiserletek/prompt_.txt_
O(1) = "írj egy makrót melyel egy tetszőleges könyvtárban található *.csv állományok sorait meg tudod számolni és ezt egy *.xlsm állományba el tudod menteni ami tárolja a *.csv állományok neveit, és azok sorainak számát\"" +

O(2) = "Írj egy VBA makrót Excelhez, amely a következő feladatot látja el:\\Csatlakozik a 'https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/' URL-hez.\A HTML forráskódból kigyűjti az összes ott található '.csv' kiterjesztésű fájl hivatkozását.\Végigmegy ezeken a fájlokon, letölti őket a memóriába (vagy ideiglenesen), és megszámolja, hány sor van bennük.\Az aktív munkalapra kiírja a CSV fájl nevét és a sorok számát két oszlopba.\A kód legyen robusztus, kezelje a HTTP kéréseket, és ne igényeljen külső bővítmények manuális bepipálását (late binding használata javasolt).\"" +

O(3) = "Készíts egy Excel VBA (Macro) kódot, amely a következő feladatot látja el külső könyvtárak használata nélkül:\1.	Csatlakozzál a "https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/" URL-re.\2.	A HTML válaszból nyerd ki az ott található összes "*.csv" kiterjesztésű fájl nevét (parse-olja a fájl listát).\3.	Minden egyes CSV fájl tartalmát töltsd le a memóriába.\4.	Számold meg, hány sor van az adott CSV fájlban, figyelembe véve a sortöréseket is.\5.	Az eredményt az aktív munkalapra írd ki: "A" oszlop a fájl neve, "B" oszlop a sorok száma. A kód használjon "Late Binding"-ot (CreateObject), hogy ne kelljen manuálisan referenciákat állítani, és kezelje a hibákat.\"" +

O(4) = ""Írj egy Excel VBA makrót, amely a következő URL-ről: 'https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/' kigyűjti az összes .csv kiterjesztésű fájl hivatkozását. A makró nyissa meg ezeket a fájlokat (anélkül, hogy letöltené őket a lemezre), számolja meg, hány sor van bennük, majd írja ki az aktív munkalapra az 'A' oszlopba a fájl nevét, a 'B' oszlopba pedig a sorok számát. A végén zárja be a megnyitott csv fájlokat."\"" +

O(5) = "keszits egy excel vba makrot, amely a kovetkezoket hajtja vegre: egy megadott konyvtarban levo osszes .csv fajlt beolvassa. Minden egyes .csv fajlban megszamolja a sorok szamat. Az ures sorokat ne szamolja meg. A sorokat szamolni kell, nem kell ertelmezni a csv-t. Az aktiv munkafuzet egy uj munkalapjara ird ki az eredmenyeket. Az eredmenyek olyan formatumban jelenjenek meg, hogy: az adott csv fajlnev es mellette a csv-ben talalhato sorok szama. Az eredmeny minden csv-rol egy kulon sorban szerepeljen. A megoldasodban csak magat a makrot kerem, semmilye
Manuális megjegyzés: ________________________________
Objektum: prompt_58.txt_ | Algoritmus K6: 1
Forrás: https://miau.my-x.hu/miau/329/prompt_plan_ranking/b-gondolatkiserletek/prompt_58.txt_
"Excel VBA Macro Processing CSV Files Kurnász Viola – RPJDP5 The best prompt Write a Google Sheets macro that checks a directory (html site) that only contains csv files (*. csv) and outputs each csv with how many lines they contain next to their names in a single *. xlsm file. abc.csv - x lines dca.csv - y lines directory hosted at : https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/ ChatGPT’s answer I can help you write a Google Sheets macro (Apps Script) that fetches all CSV files from a publicly accessible directory (HTML listing), counts the number of lines in each CSV, and outputs the results into your Google Sheet . However , Google Apps Script cannot directly access a folder on a web server like a filesystem ; instead , it can fetch URLs and parse HTML. Here’s a working example : Google Sheets Apps Script Open your Google Sheet . Go to Extensions → Apps Script . Paste the following code : function listCsvLineCounts() { const sheet = SpreadsheetApp.getActiveSpreadsheet().getActiveSheet(); sheet.clear(); // clear previous output sheet.appendRow(["CSV File", "Line Count"]); // Directory URL containing CSV files const directoryUrl = " https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/ "; // Fetch directory HTML const response = UrlFetchApp.fetch(directoryUrl); const html = response.getContentText(); // Extract CSV file links using regex const regex = /href="([^"]+\.csv)"/gi; let match; const csvFiles = []; while ((match = regex.exec(html)) !== null) { csvFiles.push(match[1]); } // For each CSV, fetch content and count lines csvFiles.forEach(file => { const fileUrl = directoryUrl + file; try { const fileResponse = UrlFetchApp.fetch(fileUrl); const content = fileResponse.getContentText(); const lineCount = content.split(/\r\n|\r|\n/).length; sheet.appendRow([file, lineCount]); } catch (e) { sheet.appendRow([file, "ERROR: " + e.message]); } }); SpreadsheetApp.flush(); Logger.log("Done listing CSVs and line counts."); } How it works : Fetches the HTML of your CSV directory . Extracts all links ending with . csv . Fetches each CSV file individually . Counts lines (splitting by newline characters). Writes results in your Google Sheet in the format : CSV File Line Count abc.csv 123 dca.csv 456 ✅ Notes / Limitations : The server must allow GET requests to the CSV files. If there are many CSVs or very large files , this may hit Google Apps Script execution time limits (~6 minutes). Google Sheets macro won’t produce . xlsm directly , but you can d
Manuális megjegyzés: ________________________________
Objektum: prompt__.txt_ | Algoritmus K6: 1
Forrás: https://miau.my-x.hu/miau/329/prompt_plan_ranking/b-gondolatkiserletek/prompt__.txt_
Készíts egyetlen, önállóan futtatható Excel VBA makrót. A makró célja:
egy webes könyvtárban található összes *.csv fájl nem üres sorainak megszámlálása fájlonként.

Követelmények:
- A felhasználó megad egy URL-t (pl. https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/).
- A makró lekéri az oldal tartalmát, és kikeresi belőle a .csv fájlokra mutató linkeket.
- A fájlokat letölti egy helyi mappába.
- Minden fájl esetén megszámolja a nem üres sorokat (Trim(sor) <> "").
- Az eredményt az aktív munkafüzet RESULTS nevű munkalapjára írja ki:
 FileName | NonEmptyRows | Status | LocalPath
- A RESULTS lapot hozza létre, ha nem létezik, és futtatáskor üríti.
- Legyen hibakezelés.
- A válasz kizárólag a teljes, bemásolható VBA kód legyen, magyarázat nélkül.

Manuális megjegyzés: ________________________________
Konklúzió
A futás során előállt a teljes OAM tábla (≈összes releváns .txt objektum → K6 attribútum), és a kiemelt manuális minták alapján a K6 pontozás auditálható. Egy futásban mindig csak a kiválasztott ág (B vagy D1) értelmezett, így elkerülhető a B/D1 keveredés.
Hatékonyság (K6) – B-szál (prompt objektumok)
A K6 hatékonyság a prompt szintjén azt méri, hogy a prompt mennyire kényszeríti ki az erőforrás-hatékony megoldást. Hatékonynak tekinthető az a prompt, amely (i) explicit módon kizárja vagy kerülendővé teszi a perzisztens I/O-t (pl. Excel-megnyitás, lokális fájlmentés), (ii) előírja a memórián belüli vagy szöveg-alapú feldolgozást, és (iii) egyértelmű adatútvonalat határoz meg (forrás → feldolgozás → kimenet). A K6 pontszám tehát nem a generált kód futásidejű viselkedését méri, hanem a prompt által kikényszerített megoldási teret értékeli.
Megjegyzés a méréshez (B-szál): A K6 automatikus értékelése a prompt szövegében megjelenő megoldáskényszerek alapján történik (pl. Excel-megnyitás vagy fájlmentés előírása vs. memóriában feldolgozás kérése), nem pedig a generált kód tényleges futtatásából származó teljesítménymérés alapján.
Manuális megjegyzések (összegzés)
prompt(6).txt_: A prompt Excel/VBA és XLSM-orientált workflow-t ír elő, ezért perzisztens I/O-t kényszerít ki, ami B-szálon hatékonyságromlás.

prompt_.txt_: A prompt több változatban is Excel-alapú feldolgozást sugall, nem zárja ki a perzisztens I/O-t, ezért vegyes megoldási teret eredményez.

prompt_58.txt_: Apps Script jellegű, memóriás/text irányba mutató megoldást sugall, de nem zárja ki egyértelműen a perzisztens I/O-t, ezért határeset.

prompt__.txt_: Lokális letöltést és Excel környezetet ír elő, ami nem tekinthető erőforrás-hatékonynak B-szálon.

prompt_hm.txt_: HTML-parszolást és szöveg-alapú feldolgozást sugall perzisztens Excel-megnyitás nélkül, ezért közelebb áll a hatékony megoldáshoz.
