
Esettanulmány 1: 

Prompt (1)+Output(1): 


Készíts egy Excel VBA makrót, ami egyetlen futtatással megoldja a következő feladatot:
- A makró hozzáfér a webes könyvtárhoz: https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/
- Listázza ki az összes *.csv fájlt a könyvtárból (használj XMLHTTP GET requestet a directory listing HTML-jének lekérésére, majd parse-old a HTML-t a fájlnevek kinyeréséhez, pl. RegExp vagy string kereséssel a <a href> linkekre).
- Minden CSV fájlra:
  - Töltsd le a fájlt egy ideiglenes helyi mappába (pl. Temp folderbe) XMLHTTP-val.
  - Nyisd meg a letöltött CSV-t Excel munkafüzetként (Workbooks.Open).
  - Számold meg a sorok számát (pl. UsedRange.Rows.Count, figyelembe véve, hogy az első sor lehet header).
  - Gyűjtsd az eredményeket egy új munkalapon: oszlopok: "Fájlnév" és "Sorok száma".
- Ha hiba van (pl. fájl nem elérhető), logold egy külön oszlopban.
- A makró végén mentsd az eredményt az aktuális XLSM fájlba.
- A kód legyen robusztus, hibakezeléssel (On Error Resume Next ahol kell), és kommentekkel magyarázva.
- Csak a VBA kódot add vissza, semmi mást.
I. Az LLM-től kapott output teljes szövege, azaz maga az egyetlen egy macro
Sub ProcessCSVFiles()
    ' Makró a webes könyvtárból származó CSV fájlok feldolgozására
    ' Létrehoz egy új munkalapot az eredményeknek, listázza a fájlokat, letölti őket,
    ' megszámolja a sorokat, és logolja a hibákat.
    
    On Error GoTo ErrorHandler
    
    Dim xmlhttp As Object
    Dim html As String
    Dim fileList() As String
    Dim i As Integer
    Dim tempPath As String
    Dim wb As Workbook
    Dim wsResults As Worksheet
    Dim rowCount As Long
    Dim nextRow As Long
    Dim fileName As String
    Dim fullUrl As String
    Dim localFilePath As String
    Dim errorLog As String
    
    ' Ideiglenes mappa meghatározása
    tempPath = Environ("TEMP") & "\"
    
    ' Új munkalap létrehozása az eredményeknek
    Set wsResults = ThisWorkbook.Worksheets.Add
    wsResults.Name = "CSV_Eredmenyek"
    wsResults.Cells(1, 1).Value = "Fájlnév"
    wsResults.Cells(1, 2).Value = "Sorok száma"
    wsResults.Cells(1, 3).Value = "Hiba"
    nextRow = 2
    
    ' XMLHTTP objektum létrehozása a directory listing lekéréséhez
    Set xmlhttp = CreateObject("MSXML2.XMLHTTP")
    xmlhttp.Open "GET", "https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/", False
    xmlhttp.send
    If xmlhttp.Status = 200 Then
        html = xmlhttp.responseText
    Else
        MsgBox "Hiba a könyvtár lekérésekor: " & xmlhttp.Status
        Exit Sub
    End If
    
    ' Fájlnevek kinyerése RegExp segítségével (keresés .csv fájlokra a <a href> linkekben)
    Dim regEx As Object
    Set regEx = CreateObject("VBScript.RegExp")
    regEx.Pattern = "<a href=""(.*?\.csv)"""
    regEx.Global = True
    regEx.IgnoreCase = True
    
    Dim matches As Object
    Set matches = regEx.Execute(html)
    
    If matches.Count > 0 Then
        ReDim fileList(1 To matches.Count)
        For i = 0 To matches.Count - 1
            fileList(i + 1) = matches(i).SubMatches(0)
        Next i
    Else
        MsgBox "Nincs CSV fájl a könyvtárban."
        Exit Sub
    End If
    
    ' Minden fájl feldolgozása
    For i = LBound(fileList) To UBound(fileList)
        fileName = fileList(i)
        fullUrl = "https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/" & fileName
        localFilePath = tempPath & fileName
        errorLog = ""
        
        On Error Resume Next ' Hibakezelés bekapcsolása a fájlletöltésnél és nyitásnál
        
        ' Fájl letöltése XMLHTTP-val
        Set xmlhttp = CreateObject("MSXML2.XMLHTTP")
        xmlhttp.Open "GET", fullUrl, False
        xmlhttp.send
        If xmlhttp.Status = 200 Then
            ' Fájl mentése helyi útvonalra ADODB.Stream segítségével
            Dim stream As Object
            Set stream = CreateObject("ADODB.Stream")
            stream.Type = 1 ' adTypeBinary
            stream.Open
            stream.Write xmlhttp.responseBody
            stream.SaveToFile localFilePath, 2 ' adSaveCreateOverWrite
            stream.Close
        Else
            errorLog = "Letöltési hiba: " & xmlhttp.Status
            GoTo LogResult
        End If
        
        ' CSV fájl megnyitása munkafüzetként
        Set wb = Workbooks.Open(Filename:=localFilePath, Local:=True)
        If Err.Number <> 0 Then
            errorLog = "Nyitási hiba: " & Err.Description
            Err.Clear
            GoTo LogResult
        End If
        
        ' Sorok számának meghatározása (UsedRange.Rows.Count, headerrel együtt)
        rowCount = wb.Sheets(1).UsedRange.Rows.Count
        
        ' Munkafüzet bezárása és fájl törlése
        wb.Close SaveChanges:=False
        Kill localFilePath
        
LogResult:
        ' Eredmények logolása
        wsResults.Cells(nextRow, 1).Value = fileName
        wsResults.Cells(nextRow, 2).Value = IIf(rowCount > 0, rowCount, "")
        wsResults.Cells(nextRow, 3).Value = errorLog
        nextRow = nextRow + 1
        
        On Error GoTo ErrorHandler ' Hibakezelés visszaállítása
    Next i
    
    ' Aktuális XLSM fájl mentése
    ThisWorkbook.Save
    
    MsgBox "Feldolgozás kész."
    Exit Sub

ErrorHandler:
    MsgBox "Váratlan hiba: " & Err.Description
End Sub


Esettanulmány 2: 

Prompt(2) + Output (2): 

. Felhasznált prompt
Készíts egy Excel VBA makrót, amely egy megadott könyvtárban lévő összes .csv fájlt feldolgozza, és megszámolja bennük a sorok számát. A makró írjon ki egy új Excel munkalapra két oszlopba: az elsőbe a csv-fájl nevét, a másodikba a sorok számát. A könyvtár URL-je: https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/. A megoldás kizárólag egyetlen makrót tartalmazzon, és futtatáskor automatikusan dolgozza fel az összes csv állományt.
2. LLM-től kapott makró
Sub CountLinesInCSV
    Dim sPath As String
    Dim sFileName As String
    Dim iFileNum As Integer
    Dim sLine As String
    Dim lCount As Long
    Dim oSheet As Object
    Dim iRow As Long

    ' Útvonal beállítása
    sPath = "/Users/mokushusi/miau.my-x.hu/miau/329/prompt_plan_ranking/csv"

    ' Perjel ellenőrzése
    If Right(sPath, 1) <> "/" Then sPath = sPath & "/"

    Set oSheet = ThisComponent.CurrentController.ActiveSheet
    iRow = 0

    sFileName = Dir(sPath & "*.csv", 0)

    Do While sFileName <> ""
        lCount = 0
        iFileNum = FreeFile
        On Error Resume Next
        Open sPath & sFileName For Input As #iFileNum
        If Err = 0 Then
            Do While Not EOF(iFileNum)
                Line Input #iFileNum, sLine
                lCount = lCount + 1
            Loop
            Close #iFileNum
        End If
        On Error GoTo 0

        oSheet.getCellByPosition(0, iRow).String = sFileName
        oSheet.getCellByPosition(1, iRow).Value = lCount
        iRow = iRow + 1

        sFileName = Dir
    Loop
End Sub


Esettanulmány 3: 

Prompt(3) + Output (3): 

Legyen adott egy szerveren egy könyvtár (https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/) tetszőlegesen sok *.csv állománnyal, melyek tartalma bármi lehet. – jelen esetben a megadott link
Feltárandó csak és kizárólag egyetlen egy Excel Macro segítségével, hogy csv-állományonként hány sor van.
Az eredmény legyen egy *.xlsm állomány, ahol meg van adva minden csv-állomány neve mellett a benne találhatók sorok maximális száma.

A fent leírt feladat alapján hozd létre nekem az excel fájlt

Makro:
Sub CountRowsInWebCSVs()
    ' Változók deklarálása
    Dim http As Object
    Dim regex As Object, matches As Object, match As Object
    Dim urlDir As String, fileUrl As String
    Dim htmlContent As String, csvContent As String
    Dim lines As Variant
    Dim r As Long
    Dim cleanContent As String
    
    ' A célkönyvtár URL-je
    urlDir = "https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/"
    
    ' Objektumok létrehozása (Late binding a kompatibilitás érdekében)
    Set http = CreateObject("MSXML2.XMLHTTP")
    Set regex = CreateObject("VBScript.RegExp")
    
    ' 1. A könyvtár tartalmának lekérése (HTML)
    http.Open "GET", urlDir, False
    http.Send
    htmlContent = http.responseText
    
    ' 2. Regex beállítása a .csv linkek kinyeréséhez
    ' Keresi a href="...csv" mintákat
    With regex
        .Pattern = "href=[""']?([^""']+\.csv)[""']?"
        .Global = True
        .IgnoreCase = True
        Set matches = .Execute(htmlContent)
    End With
    
    ' Fejlécek kiírása az Excelbe
    Cells(1, 1).Value = "Fájl neve"
    Cells(1, 2).Value = "Sorok száma (Max)"
    r = 2
    
    ' 3. Végigiterálás a talált fájlokon
    For Each match In matches
        ' Fájlnév kinyerése a Regex találatból (első csoport)
        Dim fileName As String
        fileName = match.SubMatches(0)
        
        ' Teljes URL összerakása
        fileUrl = urlDir & fileName
        
        ' CSV tartalom letöltése
        http.Open "GET", fileUrl, False
        http.Send
        csvContent = http.responseText
        
        ' Sorszámolás
        If Len(csvContent) > 0 Then
            ' Sortörések egységesítése (LF-re), hogy Windows/Unix formátumot is kezeljen
            cleanContent = Replace(csvContent, vbCrLf, vbLf) ' Windows -> Unix
            cleanContent = Replace(cleanContent, vbCr, vbLf)   ' Mac (régi) -> Unix
            
            ' Darabolás sorokra
            lines = Split(cleanContent, vbLf)
            
            ' Utolsó üres sor kezelése (ha a fájl enterrel végződik, a Split generál egy üres elemet)
            Dim lineCount As Long
            lineCount = UBound(lines) + 1
            If Len(Trim(lines(UBound(lines)))) = 0 And lineCount > 1 Then
                lineCount = lineCount - 1
            End If
            
            ' Kiírás
            Cells(r, 1).Value = fileName
            Cells(r, 2).Value = lineCount
        Else
            ' Üres fájl esetén
            Cells(r, 1).Value = fileName
            Cells(r, 2).Value = 0
        End If
        
        r = r + 1
        DoEvents ' Hogy ne fagyjon le az Excel futás közben
    Next match
    
    MsgBox "Kész! " & (r - 2) & " db CSV fájl feldolgozva.", vbInformation
End Sub


Konklúzió: 

Prompt:
Legyen adott egy szerveren egy könyvtár (https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/) tetszőlegesen sok *.csv állománnyal, melyek tartalma bármi lehet.
Egyetlen Excel VBA makró segítségével tárd fel, hogy csv-állományonként hány sor található az egyes fájlokban.
A makró:
· weben keresztül érje el a megadott könyvtárat,
· automatikusan listázza ki az összes *.csv fájlt,
· minden fájl tartalmát dolgozza fel letöltés nélkül,
· határozza meg a sorok számát fájlonként,
· az eredményt írja ki egy Excel munkalapra, ahol szerepel
· a fájl neve
· és a benne található sorok száma.
A megoldás kizárólag egyetlen makrót tartalmazzon, és futtatáskor emberi beavatkozás nélkül dolgozza fel az összes CSV állományt.

Indoklás – miért ez a legjobb prompt?
1️⃣ Egyértelműen definiálja a környezetet
· Pontosan megmondja, hogy Excel VBA a cél
· Meghatározza a webes könyvtárat (URL)
· Nem kever más környezetet (pl. LibreOffice, lokális fájlútvonal)
➡️ Ez kizárja a félreértelmezést.

2️⃣ Világosan körülírja a feladatot
· „csv-állományonként hány sor” → pontos cél
· Nem fogalmaz túl technikusan, mégis egyértelmű
· Nem kényszerít felesleges megoldásokat (pl. temp fájlok)
➡️ Az LLM szabadon, de helyesen optimalizálhat.

3️⃣ Megadja a módszert, de nem túlzottan
· Elvárja a webes feldolgozást
· Nem írja elő hogyan kell számolni (UsedRange vs. Split)
· Nem kényszeríti fájlmegnyitásra
➡️ Ez vezetett a leghatékonyabb (HTTP + string feldolgozás) megoldáshoz.

4️⃣ Jól meghatározott kimenetet kér
· Egyetlen makró
· Automatikus futás
· Strukturált Excel kimenet
➡️ Az eredmény azonnal használható.

5️⃣ Optimális egyensúly a részletesség és szabadság között
	Prompt típusa
	Eredmény

	Túl rövid
	félreértett (Prompt 2)

	Túl részletes
	túlkomplikált (Prompt 1)

	Jól kalibrált
	hatékony, pontos (Prompt 3)



📌 Összefoglalás egy mondatban
Ez a prompt a legjobb, mert világos célt ad, pontos környezetet definiál, de nem kényszerít felesleges technikai részleteket – így az LLM optimális, tiszta Excel VBA megoldást tudott adni.

