SP5 megoldás
vö: https://miau.my-x.hu/miau/329/prompt_plan_ranking/b-gondolatkiserletek/VVH6TU_teljes_rangsor_B.docx

Prompt:
Vizsgáld meg a feltöltött dokumentumban található pontozási kritériumokat, és ozz létre algoritmust a K1-2-3-4-5-6 automatizált feltárására! (egy attribútum 2 versenyző)

COPILOT:
Szuper, csináljuk meg az SP5-öt: itt van K1–K6 attribútumonként 2–2 versenyző algoritmus az automatizált feltárásra (detektálás + pontozás).\ Mindegyik algoritmus:
· Bemenet: egy objektumlista a promptokról és (ha rendelkezésre áll) az LLM‑outputként kapott makrókód (VBA/LibreOffice Basic/PS).
· Kimenet: 0–2 pont attribútumonként, a dokumentumodban szereplő rubrika szerint.
· Megközelítés: Versenyző A (szabályalapú/regex/NLP), Versenyző B (kód‑szintű/strukturális/dinamikus tesztelésre felkészített).
Interfész javaslat (egységes bemenet):
class PromptObj:
 def init(self, oid:str, neptun:str, prompttext:str, macrocode:str|None, meta:dict):
 self.oid = oid # O(i)
 self.neptun = neptun # NEPTUN
 self.prompttext = prompttext
 self.macrocode = macrocode # lehet None, ha nincs kód
 self.meta = meta # pl. {"lang":"hu","macro":"MSOffice","ll
Így minden K‑algoritmus egy score = f(prompt_obj) -> { 'Kx': 0|1|2, 'evidence': ... } eredményt ad.

K1 – Input: URL + könyvtár jelleg egyértelműsége (0–2 pont)
Versenyző A – Szabályalapú NLP + regex a prompt szövegén
Elv: a promptban explicit URL és „könyvtár”/listázás szemantika keresése.\ Heurisztikák:
· URL: https?:// mintázat + domain + path (/csv/, /files/, index stb.).
· Könyvtár jelleg: kulcsszavak: könyvtár, mappa, listáz, index, felsorol, directory, listing.
Pontozás (példa):
· 2 pont: Van URL és a promptban egyértelműen szerepel, hogy könyvtárból kell listázni (nem egyetlen fájl).
· 1 pont: Van URL vagy utalás könyvtárra, de nem elég egyértelmű (pl. „olvasd be a CSV-ket” – URL nélkül).
· 0 pont: Nincs URL és nincs könyvtár‑jelleg.
Pszeudokód:
def K1rulebased(promptobj):
 import re
 text = promptobj.prompttext.lower()
 urlfound = bool(re.search(r'https?://\S+', text))
 dircues = any(k in text for k in ['könyvtár', 'mappa', 'listáz', 'index', 'directory', 'listing'])
 if urlfound and dircues: score = 2
 elif urlfound or dircues: score = 1
 else: score = 0
 return {'K1':score, 'evidence':{'url':urlfound,'dircues':dircues}}
Versenyző B – Kód‑szintű forrásanalízis (ha van makró)
Elv: a makróban van‑e URL letöltés / web‑listázás logika (pl. XMLHTTP, URLDownloadToFile, WinHttp, Regex HTML‑re).\ Pontozás:
· 2 pont: Makró konkrétan web‑címet dolgoz fel és könyvtár‑listázásból épít CSV‑listát.
· 1 pont: URL szerepel, de a könyvtár‑jelleg (linkek bejárása) nem egyértelmű.
· 0 pont: nincs URL‑kezelés a kódban.
Pszeudokód:
def K1codeanalysis(promptobj):
 code = (promptobj.macrocode or "").lower()
 urlpatterns = ['http://','https://','url','winhttp','xmlhttp','urldownloadtofile']
 dirlistpatterns = ['href','<a ','regex','matches','linkek','index']
 url = any(p in code for p in urlpatterns)
 dirlist = any(p in code for p in dirlist_patterns)
 score = 2 if (url and dirlist) else (1 if url else 0)

K2 – Listázás: hogyan lesz meg a CSV‑k listája (0–2 pont)
Versenyző A – HTML/hivatkozás/regex detektor
Elv: a prompt/kód HTML‑ből nyeri a fájllistát (href, a‑tag, regex .csv linkekre).\ Pontozás:
· 2 pont: egyértelmű HTML linkgyűjtés + .csv szűrés.
· 1 pont: regex a szövegre, de HTML kontextus bizonytalan.
· 0 pont: nincs listázási mechanizmus.
Pszeudokód:
def K2htmllisting(promptobj):
 text = (promptobj.prompttext + (promptobj.macrocode or "")).lower()
 cueshtml = any(k in text for k in ['<a ', 'href', 'html'])
 cuescsv = any(k in text for k in ['.csv', 'csv'])
 cuesregex = any(k in text for k in ['regex','regular expression','pattern'])
 score = 2 if (cueshtml and cuescsv) else (1 if cuesregex and cuescsv else 0)
 return {'K2':score, 'evidence':{'html':cueshtml,'csvref':cues
Versenyző B – OS/mappa‑alapú listázás detektor
Elv: fájlrendszeri listázás (VBA: FileSystemObject, Dir, PowerShell: Get-ChildItem).\ Pontozás:
· 2 pont: explicit mappa bejárás + *.csv szűrő.
· 1 pont: általános mappabejárás, de .csv szűrés nem biztos.
· 0 pont: nincs listázás.
Pszeudokód:
def K2fslisting(promptobj):
 code = (promptobj.macrocode or "").lower()
 fscues = any(k in code for k in ['filesystemobject','getfolder','dir(','get-childitem'])
 csvfilter = any(k in code for k in ['.csv','*.csv'])
 score = 2 if (fs score = 2 if (fscues and csvfilter) else (1 if fscues else 0)

K3 – Sor‑definíció: mi számít sornak (CRLF/LF, üres sor, BOM) (0–2 pont)
Versenyző A – Statikus kódelemzés mintázatokra
Elv: keresd Line Input, Split, vbCrLf, Len(Trim(line))>0, BOM kezelés (\ufeff).\ Pontozás:
· 2 pont: üres sorok kizárása és CRLF/LF explicit kezelése és (ha jelzett) BOM‑kezelés.
· 1 pont: legalább üres sorok kizárása vagy CRLF/LF kezelése.
· 0 pont: nincs definíció; Excel megnyitásból „sorok” jönnek automatikusan.
Pszeudokód:
def K3rowdefstatic(promptobj):
 code = (promptobj.macrocode or "").lower()
 emptyexcl = ('len(trim(' in code) or 'if trim(' in code)
 crlfhandling = any(k in code for k in ['vbcrlf','vblf','replace(']) # egyszerű heurisztika
 bomhandling = any(k in code for k in ['ufeff','bom'])
 score = 2 if (emptyexcl and crlfhandling) else (1 if (emptyexcl or crlfhandling) else 0)
 # opcionális +1 nem lehetséges a rubrikában, de evidence-ben jelezhetjük a BOM-t
 return {'
Versenyző B – Fiktív tesztkészlet‑orientált (dinamikusra felkészített)
Elv: ha lesz futtatás, adj 3 minta CSV‑t:
· test_crlf.csv (CRLF), test_lf.csv (LF), test_empty.csv (üres sorokkal, BOM‑mal).\ És elvárt eredmény (sorok száma). Detektor: a prompt/makró explicit vállalja‑e ezek kezelését.
Detektálás (statikus, előkészítés futtatásra):
def K3rowdefclaims(promptobj):
 text = (promptobj.prompttext + (promptobj.macro_code or "")).lower()
 claims = any(k in text for k in ['crlf','lf','bom','üres sor','trim'])
 score = 2 if claims else 0 # itt „vállalás” pontozása, futtatáskor validálható

K4 – Output: struktúra (lap + oszlopok + címkék) (0–2 pont)
Versenyző A – Header/label mintázat‑detektor
Elv: kód/prompt alapján van‑e: cél munkalap neve, oszlopfejlécek (pl. Fájlnév, Sorok száma).\ Pontozás:
· 2 pont: lapnév + két vagy több egyértelmű fejléc (pl. Fájlnév, Max sor).
· 1 pont: van valamilyen struktúra (pl. két oszlop), de nincs fejléc.
· 0 pont: „szórt” output vagy nincs dokumentálva.
Pszeudokód:
def K4outputstruct(promptobj):
 text = (promptobj.prompttext + (promptobj.macrocode or "")).lower()
 sheetcue = any(k in text for k in ['worksheet','workbook','sheet','munkalap'])
 headers = any(k in text for k in ['fejléc','header','cells(1,1)','cells(1,2)','fájlnév','sorok száma'])
 score = 2 if (sheetcue and headers) else (1 if sheetcue else 0)
 return {'K4':score
Versenyző B – Formai szabálykövetés (konzisztencia ellenőrzés)
Elv: kodok.txt szerint elvárt makró‑platform (MS/Libre), és a kimenet ennek megfelelő (pl. Excel: Cells, Libre: Sheet.getCellRangeByPosition).\ Pontozás:
· 2 pont: platform‑konform kimenet + legalább két oszlop és azonosítható címkék.
· 1 pont: platform‑konform kimenet, de minimális struktúra.
· 0 pont: platform‑inkonzisztens vagy hiányos.
Pszeudokód:
def K4platformconsistency(promptobj):
 platform = (promptobj.meta.get('macro','')).lower()
 code = (promptobj.macrocode or '').lower()
 if platform.startswith('ms'):
 conform = 'cells(' in code or 'range(' in code
 elif platform.startswith('libre'):
 conform = 'getcellrangebyposition' in code or 'sheet' in code
 else:
 conform = False
 twocols = any(k in code for k in ['cells(1,2)','cells(2,2)']) or 'columns' in code
 labels = any(k in code for k in ['fájlnév','filename','header','fejléc'])
 score = 2 if (conform and twocols and labels) else (1 if conform else score = 2 if (conform and two_cols and labels) else (1 if conform else 0)

K5 – Hibakezelés/hibajelölés kérése (0–2 pont)
Versenyző A – On Error / try‑catch mintázat‑detektor
Elv: VBA‑ban On Error GoTo, Err.Number, jelölés cellában vagy logban; PS/Libre megfelelői.\ Pontozás:
· 2 pont: explicit hibakezelés + felhasználóbarát jelölés (pl. „Hiba” oszlop).
· 1 pont: csak On Error/try‑catch, jelölés nélkül.
· 0 pont: nincs hibakezelés.
Pszeudokód:
def K5errorhandling(promptobj):
 code = (promptobj.macro_code or "").lower()
 handler = any(k in code for k in ['on error','try','catch','err.number','resume'])
 mark = any(k in code for k in ['hiba','error','errdesc','cells(i,3)','log'])
 score = 2 if (handler and mark) else (1 if handler else 0)
Versenyző B – Szándék/utasítás detektor a promptban
Elv: a prompt szövegében van‑e explicit kérés hibakezelésre és jelölésre.\ Pontozás:
· 2 pont: „kezeld a hibákat és jelöld az eredményt oszlopban/üzenetben”.
· 1 pont: „kezeld a hibákat” kérés, jelölés nélkül.
· 0 pont: nincs utalás.
Pszeudokód:
def K5promptintent(promptobj):
 text = promptobj.prompt_text.lower()
 handle = any(k in text for k in ['hibakezelés','kezeld a hibákat','exception'])
 mark = any(k in text for k in ['jelöld','error mark = any(k in text for k in ['jelöld','error column','hiba oszlop'])
 score = 2 if (handle and mark) else (1 if handle else 0)

K6 – Hatékonyság (text/memória alapú vs Excel megnyitás) (0–2 pont)
Versenyző A – Módszer‑detektor: text‑stream vs Excel‑open
Elv: ha a kód Open ... For Input, TextStream, File.ReadAll – 2 pont; ha Workbooks.Open/CSV Excelbe töltése – 0 pont; vegyes/szürke – 1 pont.\ Pszeudokód:
def K6efficiencymethod(promptobj):
 code = (promptobj.macrocode or "").lower()
 textbased = any(k in code for k in ['open ', 'for input', 'textstream', 'line input'])
 excelopen = any(k in code for k in ['workbooks.open','application.workbooks.open'])
 score = 2 if textbased else (0 if excel_open else 1)

Versenyző B – Komplexitás‑heurisztika + nagy fájl figyelmeztetés
Elv: ha kód „soronkénti olvasás” + minimális allokáció → hatékony; ha cellákra tölt, sok objektum → kevésbé.\ Pontozás:
· 2 pont: soronkénti stream + nincs felesleges workbook művelet.
· 1 pont: vegyes/előfordul workbook‑művelet.
· 0 pont: kizárólag workbook‑megnyitás és cella‑szintű bejárás.
Pszeudokód:
def K6complexityheur(promptobj):
 code = (promptobj.macrocode or "").lower()
 streaming = any(k in code for k in ['line input','readline','stream'])
 workbookops = any(k in code for k in ['cells(','range(','workbooks.open'])
 score = 2 if (streaming and not workbookops) else (1 if (streaming and workbookops) else score = 2 if (streaming and not workbookops) else (1 if (streaming and workbookops) else 0)

Összefésülő pipeline minta (K1–K6 pontozás egyben)
def evaluateprompt(promptobj):
 res = {}
 res.update(K1rulebased(promptobj))
 res.update(K1codeanalysis(promptobj))
 res.update(K2htmllisting(promptobj))
 res.update(K2fslisting(promptobj))
 res.update(K3rowdefstatic(promptobj))
 res.update(K3rowdefclaims(promptobj))
 res.update(K4outputstruct(promptobj))
 res.update(K4platformconsistency(promptobj))
 res.update(K5errorhandling(promptobj))
 res.update(K5promptintent(promptobj))
 res.update(K6efficiencymethod(promptobj))
 res.update(K6complexityheur(promptobj))
 # döntés K1..K6 végpontszáma: versenyzők közül a max (vagy átlag)
 K1 = max(res['K1'], res.get('K1',0)) # itt csak demonstráció; valójában külön kulcsokat adj A/B-nek
 # Javaslat: tárold külön: K1A, K1B, … majd K1 = max(K1A,K1B)
Gyakorlati tanács: Minden K‑hez külön kulcsot érdemes visszaadni (pl. K1_A, K1_B), majd a végső pontszám: K1 = max(K1_A, K1_B) vagy átlag (ha a szabályzat úgy kívánja).

Minőségbiztosítás és döntési szabályok
· Konzisztencia: ha kodok.txt szerint a makró MS Office, de a kód Libre‑API‑t használ → K4_B leminősíti.
· Ellenőrizhetőség: a Versenyző B algoritmusok (K3_B, K4_B, K6_B) előkészítik a futtatható validálást (ha majd lesz tesztkörnyezet).
· Tie‑breaker: ha A és B azonos pontot ad, K3 és K6 esetén BOM/edge‑case említések dönthetnek (aki fentebb kezeli, kapja a plusz szakmai kreditet a Konklúzióban).

Mit tudok még hozzáadni?
· Készíthetek egy futtatható Python keretrendszert (parancssori eszköz), ami prompt.txt + kodok.txt + (opcionálisan) makrókód fájlokból adja vissza a K1–K6 pontokat és az Összpontot.
· Word sablont is adok, amelyben az Esettanulmány részben automatikusan beilleszthető: prompt(i) + output(i), majd a Konklúzió a K‑pontok súlyozott összegével.
Szeretnéd, hogy legeneráljam egyben a futtatható Python eszközt és a Word sablont a leadáshoz? Vagy előbb rád szabjam az algoritmusokat a te aktuális prompt‑/kódhalmazodra (ha megosztod a fájlokat)?

