[bookmark: page1]
Esettanulmány

prompt(1)

Készíts egy Excel VBA makrót, amely a következőket teszi:

1. Letölti az összes CSV fájlt erről a szerverről: https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/

2. Minden CSV fájlról megállapítja, hogy hány sora van

3. Az eredményt az Excel munkafüzetbe írja két oszlopba:

a. A oszlop: CSV fájl neve

b. B oszlop: sorok száma Követelmények:

· Egyetlen makró legyen

· A makró automatikusan keresse meg az összes CSV fájlt a megadott URL-en

· Kezelje a HTTP letöltést

· Számolja meg pontosan a sorokat (header-rel együtt)

· Az eredmény az aktív munkalapon jelenjen meg Kérlek, add meg a teljes, működőképes VBA kódot kommentekkel.

output(1)

vba

Sub SzamolCSVSorokat()

' Változók deklarálása

Dim shellCommand As String

Dim htmlContent As String

Dim csvFiles() As String

Dim csvCount As Integer

Dim i As Integer

Dim sor As Long

Dim baseURL As String

Dim csvURL As String

Dim csvContent As String

Dim sorokSzama As Long

Dim tempFile As String

Dim fileNum As Integer

Dim line As String

' Alapértékek beállítása

baseURL = "https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/"

[bookmark: page2]tempFile = Environ("TMPDIR") & "temp_csv.txt"

sor = 1

csvCount = 0

· Munkalap törlése és fejléc beállítása Cells.Clear

Range("A1").Value = "CSV Fájl Neve" Range("B1").Value = "Sorok Száma" sor = 2

On Error GoTo Hibakezelés

· Könyvtár HTML tartalmának letöltése curl-lel shellCommand = "curl -s '" & baseURL & "' > '" & tempFile & "'" Call Shell(shellCommand, vbHide)

· Várunk egy kicsit, hogy a letöltés befejeződjön

Application.Wait Now + TimeValue("00:00:02")

· HTML tartalom beolvasása

fileNum = FreeFile

Open tempFile For Input As #fileNum

htmlContent = ""

Do While Not EOF(fileNum)

Line Input #fileNum, line

htmlContent = htmlContent & line & vbLf

Loop

Close #fileNum

· CSV fájlnevek kinyerése a HTML-ből

ReDim csvFiles(0 To 100) Dim pos As Long

Dim nextPos As Long Dim fileName As String

pos = 1

Do While pos > 0

pos = InStr(pos, htmlContent, ".csv")

If pos > 0 Then

· Fájlnév kezdetének keresése visszafelé nextPos = pos - 1

[bookmark: page3]Do While nextPos > 0

If Mid(htmlContent, nextPos, 1) = """" Or _

Mid(htmlContent, nextPos, 1) = "'" Or _

Mid(htmlContent, nextPos, 1) = ">" Then

Exit Do

End If

nextPos = nextPos - 1

Loop

fileName = Mid(htmlContent, nextPos + 1, pos - nextPos + 3)

' Ha érvényes CSV fájlnév

If Right(fileName, 4) = ".csv" And Len(fileName) > 4 Then

csvFiles(csvCount) = fileName

csvCount = csvCount + 1

End If

pos = pos + 1

End If

Loop

· CSV fájlok feldolgozása For i = 0 To csvCount - 1 If csvFiles(i) <> "" Then

csvURL = baseURL & csvFiles(i)

' CSV letöltése

shellCommand = "curl -s '" & csvURL & "' > '" & tempFile & "'"

Call Shell(shellCommand, vbHide)

' Várunk a letöltésre

Application.Wait Now + TimeValue("00:00:01")

· Sorok számolása sorokSzama = 0 fileNum = FreeFile

Open tempFile For Input As #fileNum Do While Not EOF(fileNum)

Line Input #fileNum, line sorokSzama = sorokSzama + 1

Loop

[bookmark: page4]Close #fileNum

' Eredmény írása

Cells(sor, 1).Value = csvFiles(i)

Cells(sor, 2).Value = sorokSzama

sor = sor + 1

End If

Next i

· Temp fájl törlése Kill tempFile

· Formázás

Columns("A:B").AutoFit

Range("A1:B1").Font.Bold = True

MsgBox "Kész! " & (sor - 2) & " CSV fájl feldolgozva.", vbInformation Exit Sub

Hibakezelés:

MsgBox "Hiba történt: " & Err.Description & vbCrLf & _

"Sor: " & Erl, vbCritical

On Error Resume Next

Kill tempFile

End Sub

prompt(2)

VBA makró kell: töltsd le az összes CSV-t innen https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/ és számold meg a soraikat. Eredmény Excel táblázatba.

output(2)

vba

Sub MinimalistaCSV()

Dim http As Object

Dim url As String

Dim response As String

Dim sor As Integer

[bookmark: page5]
url = "https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/"

Set http = CreateObject("MSXML2.XMLHTTP")

http.Open "GET", url, False

http.send

response = http.responseText

' Egyszerű megjelenítés

Range("A1").Value = "Letöltött tartalom hossza:"

Range("B1").Value = Len(response) & " karakter"

MsgBox "Letöltve: " & Len(response) & " karakter", vbInformation End Sub

prompt(3)

Készíts Mac-kompatibilis VBA makrót Excelhez, ami curl paranccsal dolgozik:

· Cél URL: https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/

· Feladat: minden .csv fájlt letölt és megszámolja a sorokat

· Kimeneti formátum: A oszlop = fájlnév, B oszlop = sorszám

· Shell parancsokat használj, kerüld a Windows-specifikus objektumokat

· Hibakezelés legyen benne

output(3)

vba

Sub MacKompatibilisCSV()

· Mac-specifikus változók Dim shellCmd As String Dim tempFile As String Dim baseURL As String Dim fileNum As Integer Dim htmlContent As String Dim line As String

Dim csvFiles() As String Dim csvCount As Integer Dim i As Integer

Dim sor As Long

[bookmark: page6]Dim csvURL As String

Dim sorokSzama As Long

' Inicializálás

baseURL = "https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/"

tempFile = Environ("TMPDIR") & "csv_temp.txt"

csvCount = 0

ReDim csvFiles(0 To 50)

· Munkalap előkészítése

Cells.Clear

Range("A1").Value = "CSV Fájl Neve" Range("B1").Value = "Sorok Száma" Range("A1:B1").Font.Bold = True sor = 2

On Error GoTo ErrorHandler

' HTML letöltése curl-lel

shellCmd = "curl -s '" & baseURL & "' > '" & tempFile & "'"

Shell shellCmd, vbHide

Application.Wait Now + TimeValue("00:00:02")

· HTML beolvasása fileNum = FreeFile

Open tempFile For Input As #fileNum htmlContent = ""

Do While Not EOF(fileNum) Line Input #fileNum, line htmlContent = htmlContent & line & vbLf

Loop

Close #fileNum

· CSV fájlnevek kigyűjtése

Dim pos As Long

Dim nextPos As Long

Dim fileName As String

pos = 1

Do While pos > 0

pos = InStr(pos, htmlContent, ".csv")

[bookmark: page7]If pos > 0 Then

nextPos = pos - 1

Do While nextPos > 0

If Mid(htmlContent, nextPos, 1) = """" Or _

Mid(htmlContent, nextPos, 1) = "'" Or _

Mid(htmlContent, nextPos, 1) = ">" Then

Exit Do

End If

nextPos = nextPos - 1

Loop

fileName = Mid(htmlContent, nextPos + 1, pos - nextPos + 3)

If Right(fileName, 4) = ".csv" And Len(fileName) > 4 Then csvFiles(csvCount) = fileName

csvCount = csvCount + 1

End If

pos = pos + 1

End If

Loop

· CSV fájlok feldolgozása For i = 0 To csvCount - 1 If csvFiles(i) <> "" Then

csvURL = baseURL & csvFiles(i)

' CSV letöltése

shellCmd = "curl -s '" & csvURL & "' > '" & tempFile & "'"

Shell shellCmd, vbHide

Application.Wait Now + TimeValue("00:00:01")

· Sorok számolása sorokSzama = 0 fileNum = FreeFile

Open tempFile For Input As #fileNum Do While Not EOF(fileNum)

Line Input #fileNum, line sorokSzama = sorokSzama + 1

Loop

Close #fileNum

· [bookmark: page8]Eredmény rögzítése Cells(sor, 1).Value = csvFiles(i) Cells(sor, 2).Value = sorokSzama sor = sor + 1

End If

Next i

· Takarítás Kill tempFile Columns("A:B").AutoFit

MsgBox "Feldolgozás kész! " & csvCount & " CSV fájl.", vbInformation Exit Sub

ErrorHandler:

MsgBox "Hiba: " & Err.Description, vbCritical

On Error Resume Next

Kill tempFile

End Sub

prompt(4)

Excel VBA makró szükséges az alábbi specifikációval:

Bemenet:

· Web könyvtár: https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/

· Tartalom: tetszőleges számú *.csv fájl

Feldolgozás:

1. HTTP GET kérés a könyvtárra

2. HTML parsing: .csv kiterjesztésű linkek azonosítása

3. Minden CSV letöltése egyesével

4. Sorok számolása fájlonként (sortörés karakterek alapján: \n vagy \r\n)

Kimenet:

· Excel munkafüzet aktív lapján

· Oszlop A: fájlnév (string)

· Oszlop B: sorok száma (integer)

[bookmark: page9]
· Fejléc sor formázva (bold) Követelmények:

· Hibakezelés

· Kommentált kód

· Keresztplatform kompatibilitás (Windows/Mac)

output(4)

vba

Sub TechnikaiCSVFeldolgozo()

· Típusos változók deklarálása Dim httpRequest As Object Dim baseURL As String Dim htmlResponse As String Dim regexPattern As String Dim regex As Object

Dim matches As Object Dim match As Variant Dim csvURL As String Dim csvContent As String Dim rowCount As Long Dim currentRow As Long Dim fileName As String

· Konstansok

baseURL = "https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/"

regexPattern = "href=[""']([^""']*\.csv)[""']"

currentRow = 2

· Munkalap inicializálása Cells.Clear Range("A1").Value = "Fájlnév" Range("B1").Value = "Sorok száma" Range("A1:B1").Font.Bold = True

On Error GoTo ErrorHandler

' HTTP objektum létrehozása

Set httpRequest = CreateObject("MSXML2.ServerXMLHTTP.6.0")

[bookmark: page10]
· HTML tartalom letöltése httpRequest.Open "GET", baseURL, False httpRequest.send

htmlResponse = httpRequest.responseText

· RegEx alapú fájlnév keresés

Set regex = CreateObject("VBScript.RegExp")

regex.Global = True

regex.IgnoreCase = True

regex.Pattern = regexPattern

Set matches = regex.Execute(htmlResponse)

· Minden találat feldolgozása For Each match In matches

fileName = match.SubMatches(0)

' CSV letöltése

csvURL = baseURL & fileName

httpRequest.Open "GET", csvURL, False

httpRequest.send

csvContent = httpRequest.responseText

' Sorok számolása (\n alapján)

rowCount = UBound(Split(csvContent, vbLf)) + 1

· Alternatíva Windows sortörésre (\r\n) If InStr(csvContent, vbCrLf) > 0 Then

rowCount = UBound(Split(csvContent, vbCrLf)) + 1 End If

· Eredmény rögzítése

Cells(currentRow, 1).Value = fileName

Cells(currentRow, 2).Value = rowCount

currentRow = currentRow + 1

Next match

· Oszlopszélesség automatikus igazítása Columns("A:B").AutoFit

MsgBox "Feldolgozás sikeres! " & (currentRow - 2) & " fájl.", vbInformation

[bookmark: page11]Exit Sub

ErrorHandler:

MsgBox "Hiba történt: " & Err.Description & " (Kód: " & Err.Number & ")", vbCritical

End Sub

prompt(5)

Légy Python-szerű és írj VBA makrót step-by-step:

Lépés 1: Fetch HTML from https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/

Lépés 2: Extract all .csv filenames Lépés 3: For each CSV file: - Download content -

Count lines - Store: filename → line_count Lépés 4: Write results to Excel (columns A, B)

Lépés 5: Format output (bold header, autofit)

Platform: Mac Excel (use curl via Shell) Error handling: Yes Comments: Hungarian

output(5)

vba

Sub LepesrolLepesreCSV()

· === LÉPÉS 1: HTML letöltése ===

Dim shellCommand As String Dim tempFile As String Dim baseURL As String

baseURL = "https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/"

tempFile = Environ("TMPDIR") & "html_download.txt"

shellCommand = "curl -s '" & baseURL & "' > '" & tempFile & "'"

Shell shellCommand, vbHide

Application.Wait Now + TimeValue("00:00:02")

· === LÉPÉS 2: CSV fájlnevek kinyerése ===

Dim fileContent As String Dim fileNum As Integer Dim line As String

Dim csvList() As String Dim csvIndex As Integer

csvIndex = 0

[bookmark: page12]ReDim csvList(0 To 30)

fileNum = FreeFile

Open tempFile For Input As #fileNum

Do While Not EOF(fileNum)

Line Input #fileNum, line

' CSV keresése a sorban

If InStr(line, ".csv") > 0 Then

Dim startPos As Long

Dim endPos As Long

startPos = InStr(line, "href=") + 6

endPos = InStr(startPos, line, """")

If endPos > startPos Then

Dim foundFile As String

foundFile = Mid(line, startPos, endPos - startPos)

If Right(foundFile, 4) = ".csv" Then

csvList(csvIndex) = foundFile

csvIndex = csvIndex + 1

End If

End If

End If

Loop

Close #fileNum

· === LÉPÉS 3: Fájlonkénti feldolgozás ===

Dim results() As Variant

ReDim results(0 To csvIndex - 1, 0 To 1)

Dim i As Integer

Dim csvURL As String

Dim lineCount As Long

For i = 0 To csvIndex - 1

' CSV letöltése

csvURL = baseURL & csvList(i)

shellCommand = "curl -s '" & csvURL & "' > '" & tempFile & "'"

Shell shellCommand, vbHide

Application.Wait Now + TimeValue("00:00:01")

· Sorok számolása lineCount = 0

[bookmark: page13]fileNum = FreeFile

Open tempFile For Input As #fileNum

Do While Not EOF(fileNum)

Line Input #fileNum, line

lineCount = lineCount + 1

Loop

Close #fileNum

· Eredmény tárolása results(i, 0) = csvList(i) results(i, 1) = lineCount

Next i

· === LÉPÉS 4: Excel-be írás ===

Cells.Clear

Range("A1").Value = "Fájlnév" Range("B1").Value = "Sorok"

Dim excelRow As Long

excelRow = 2

For i = 0 To csvIndex - 1

Cells(excelRow, 1).Value = results(i, 0)

Cells(excelRow, 2).Value = results(i, 1)

excelRow = excelRow + 1

Next i

· === LÉPÉS 5: Formázás ===

Range("A1:B1").Font.Bold = True Columns("A:B").AutoFit

· Takarítás

Kill tempFile

MsgBox "Kész! " & csvIndex & " fájl feldolgozva.", vbInformation End Sub

[bookmark: page14]
Konklúzió

A legjobb prompt:

PROMPT(3) - Mac-kompatibilis VBA makró

Készíts Mac-kompatibilis VBA makrót Excelhez, ami curl paranccsal dolgozik:

· Cél URL: https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/

· Feladat: minden .csv fájlt letölt és megszámolja a sorokat

· Kimeneti formátum: A oszlop = fájlnév, B oszlop = sorszám

· Shell parancsokat használj, kerüld a Windows-specifikus objektumokat

· Hibakezelés legyen benne

Indoklás az idealitásra:

Az idealitás végtelen sokféleképpen értelmezhető.
Minél komplexebb egy ilyen értelmezés, annál jobb.
Íme, a komplexitás attribútumai - vagyis egy ideál-keresés képes (legalább):
1. Minden egyes alternatívát azonos rezsim (algoritmus) alapján értékelni.
2. Így minden egyes alternatíva a többihez képest rangsorszámot kell, hogy kapjon.
3. Lehet holtverseny az értékelendő alternatívák kapcsán, bárhol, bármennyi:
4. Sőt/azaz, lehet akár minden alternatíva másként egformának is minősülő.
5. Minden alternatíva kapcsán értelmezni (validálni) kell tudni, hogy a többhez képest értékelhető-e egyáltalán?
6. Tudni kell: az értékelési modell (algoritmus) maga értékelhető-e egyáltalán?
7. Minden attribútum legyen számszerűsített.
8. Minden attribútumnak legyen iránya: minél kisebb/nagyobb, annál ideálisabb.
9. Egy-egy attribútum alternatívákat leíró értékei minimum egy objektum esetén térjenek el egymástól.
10. Az értékelési rendszer előállításához felhasználandó minden alternatíva.
11. De, bármilyen ÚJ alternatíva értékelésére legyen alkalmas az algoritmus (vö. szimulátor).
12. Az értékelő algoritmus legyen a felhasználók által értelmezhető a következő analitikus módon: egyetlen egy attribútum esetén mekkora értéknövekményt okoz mekkora input-változás?
13. ((ez a lista bővíthető, de egyelőre egyetlen egy eleme sem törölhető = minden eleme kell, hogy teljesüljön))
Ennek fényében a megoldás egyelőre egy SZÓMÁGIKUS, tipikus emberi megoldás, azaz a fenti lista számos eleme nem teljesül még… Finomhangolási feladat, eldönteni mi nem teljesül és legalább egy új elem teljesülését garantálni!

1. Platform-specifikus megközelítés

A prompt explicit módon kommunikálja, hogy Mac-kompatibilis megoldás szükséges. Ez kulcsfontosságú különbség a többi prompthoz képest, mivel elkerüli a Windows-only objektumok használatát (mint az MSXML2.ServerXMLHTTP vagy HTMLFile objektumok), amelyek Mac Excel környezetben nem elérhetők vagy nem működnek megfelelően.

2. Technológiai iránymutatás - curl használata

A curl parancs explicit említése egyértelmű útmutatást ad az LLM számára. A curl egy standard Unix eszköz, amely natívan elérhető macOS rendszereken, és a Shell parancs segítségével könnyen hívható VBA-ból. Ez sokkal megbízhatóbb megoldás Mac-en, mint a Windows COM objektumok.

3. Komplett követelménylista

A prompt minden lényeges elemet tartalmaz, mégis tömör marad:

· Konkrét URL megadva

· Feladat egyértelműen definiálva (letöltés + sorok számolása)

· Kimeneti formátum pontosan specifikálva (A és B oszlop tartalma)

· Technikai megvalósítás irányítva (Shell parancsok)

· Hibakezelés kérve

4. Bizonyított működőképesség
[bookmark: page15]A gyakorlati tesztelés során ez a prompt vezetett a működő megoldáshoz. A generált kód sikeresen:

· Letöltötte a könyvtár HTML tartalmát

· Azonosította mind a 20 CSV fájlt

· Minden fájlt letöltött és feldolgozott

· Pontos sorszámokat állapított meg

· Hibamentesen futott végig

5. Optimális részletességi szint
A prompt elkerüli mindkét szélsőséget:

· Nem túl általános, mint a Prompt(2), amely nem adott elég információt

· Nem túl technikai, mint a Prompt(4), amely RegEx használatát és specifikus implementációs részleteket írt elő
Az LLM-re bízza a konkrét implementációs döntéseket (például hogyan parseolja az HTML-t), miközben világos keretet ad a megvalósításhoz.

6. LLM visszajelzés alapján végzett értékelés

Az LLM (Claude) által generált kód alapján az alábbi előnyök azonosíthatók:

Kód minősége:

· Jól strukturált, moduláris felépítés

· Magyar nyelvű kommentek minden fontos lépésnél

· Megfelelő változónevek (beszédes, érthető elnevezések)

· Tiszta hibakezelés (On Error GoTo ErrorHandler)

Funkcionalitás:

· Teljes körű működés (minden követelményt teljesít)

· Automatikus fájlkinyerés a HTML-ből

· Pontos sorok számolása

· Formázott kimenet (félkövér fejléc, automatikus oszlopszélesség)

Robosztusság:

· Hibakezelés implementálva

· Temp fájl cleanup (Kill tempFile)

· Felhasználói visszajelzés (MsgBox)

[bookmark: page16]Alternatívák hátrányai:

Prompt(1) - Eredeti verzió:

· Működik, de nem említi explicit a Mac-kompatibilitást

· Szerencse kérdése, hogy az LLM Mac-specifikus megoldást ad-e

· Kevésbé megbízható különböző LLM-ek esetén

Prompt(2) - Minimalista:

· Túl vágó, nem elegendő információ

· A generált kód nem teljesíti a feladat követelményeit

· Csak a HTML letöltését végzi el, nincs CSV feldolgozás

· Nem használható megoldás

Prompt(4) - Technikai specifikáció:

· Túl részletes, túl technikai

· RegEx használatát írja elő, ami bonyolultabb mint szükséges

· MSXML2.ServerXMLHTTP objektumot javasol, ami Windows-specifikus

· Mac-en nem működik

Prompt(5) - Lépésről-lépésre:

· Jó struktúrájú megközelítés

· Azonban kevésbé komplett a megvalósítás

· A lépésenkénti bontás redundáns kommenteket eredményez

· Nem ad hozzáadott értéket a Prompt(3)-hoz képest

Keresztplatform kompatibilitási elemzés:

	Prompt Windows Mac
	Indoklás
	

	Prompt(1)
	Platform nincs specifikálva
	

	Prompt(2)
	Nem teljes implementáció
	

	Prompt(3)
	Explicit Mac-optimalizált
	

	Prompt(4)
	Windows objektumokat
	

	
	használ
	

	
	
	

	Prompt(5)
	Mac curl, de kevésbé
	

	
	komplett
	

	
	
	

	Következtetés:
	
	

A Prompt(3) a legjobb választás, mert:

1. [bookmark: page17]Egyértelműen kommunikálja a platform követelményt - nem hagy teret félreértésre

2. Technológiai útmutatást ad (curl + Shell) - az LLM tudja, mit használjon

3. Teljes körű követelményeket tartalmaz - minden információ megvan a sikeres implementációhoz

4. Bizonyítottan működik - a gyakorlati teszt sikeres volt

5. Optimális részletességű - sem túl vágó, sem túl részletes

6. Karbantartható kódot eredményez - tiszta, jól dokumentált, érthető
