Esettanulmány

A K6_pontszam_algoritmus egy Python-függvény, amely egy prompt szövegét automatikusan elemzi a K6 (Hatékonyság) kritérium alapján. Reguláris kifejezések segítségével vizsgálja, hogy a prompt milyen feldolgozási megközelítést kér az Excel/VBA környezetben.
A függvény 0 pontot ad, ha a szöveg kifejezetten Excel-megnyitást vagy a Workbooks.Open jellegű megoldást ír elő, 2 pontot, ha hatékony, megnyitás nélküli (memória- vagy fájlkezelő-alapú) feldolgozást kér, és 1 pontot, ha a prompt módszertanilag semleges.

A függvény létrehozásához az alábbi promptot használtam:
Feladat (SP5): Készíts egy Python függvényt (K6_pontszam_algoritmus), amely az inputként megadott prompt szövegét elemzi a K6 (Hatékonyság) kritérium szempontjából, és 0, 1 vagy 2 pontot ad rá.
1. 0 pontot adjon, ha a prompt expliciten kéri a Workbooks.Open metódust vagy az Excelben való megnyitást (pl. "nyissa meg a CSV-t Excel munkafüzetként").
2. 2 pontot adjon, ha a prompt expliciten kéri a memória-alapú, fájlkezelő-alapú (Stream, FSO, Line Input), vagy megnyitás nélküli feldolgozást (pl. "töltse le a memóriába", "FileSystemObject").
3. 1 pontot adjon, ha a prompt semleges, és nem említ módszert.
Használd a Python re (reguláris kifejezések) modult! Csak magát a függvényt add vissza, semmi magyarázatot.

Függvény:
import re
import csv

from sp5 import K6_pontszam_algoritmus

def _unescape(s: str) -> str:
 # Próbáljuk "emberszöveggé" alakítani az olyan részeket, mint \n, \", \\ stb.
 try:
 return bytes(s, "utf-8").decode("unicode_escape")
 except Exception:
 return s

def parse_O_prompts(text: str):
 # O(n) = ... blokkok kivágása
 blocks = re.findall(r'O\((\d+)\)\s*=\s*(.*?)(?=\nO\(\d+\)\s*=|\Z)', text, flags=re.DOTALL)
 for idx_str, block in blocks:
 idx = int(idx_str)
 # blokkban lévő idézőjeles darabok összefűzése (a + operátor miatt több rész lehet)
 parts = re.findall(r'"((?:[^"\\]|\\.)*)"', block, flags=re.DOTALL)
 joined = "".join(parts)
 yield idx, _unescape(joined)

def main():
 with open("prompt1.txt", "r", encoding="utf-8", errors="replace") as f:
 raw = f.read()

 rows = []
 for idx, prompt in parse_O_prompts(raw):
 score = K6_pontszam_algoritmus(prompt)
 rows.append((idx, score))

 # Konzolra (táblázat / CSV)
 print("O_index,K6_pontszam")
 for idx, score in rows:
 print(f"{idx},{score}")

 # Fájlba is (Excel-barát)
 with open("k6_eredmeny.csv", "w", newline="", encoding="utf-8") as out:
 w = csv.writer(out)
 w.writerow(["O_index", "K6_pontszam"])
 w.writerows(rows)

if __name__ == "__main__":
 main()

Eredmények:
	O_index
	K6_pontszam

	1
	1

	2
	0

	3
	0

	4
	1

	5
	0

	6
	0

	7
	0

	8
	0

	9
	0

	10
	0

	11
	0

	12
	0

	13
	0

	14
	0

	15
	0

	16
	0

	17
	1

	18
	1

	19
	0

	20
	0

	21
	0

	22
	0

	23
	0

	24
	0

	25
	0

	26
	0

	27
	0

	28
	0

	29
	2

	30
	0

	31
	0

	32
	0

	33
	0

	34
	0

	35
	0

	36
	1

	37
	0

	38
	0

	39
	1

	40
	0

	41
	0

	42
	1

	43
	0

	44
	0

	45
	0

	46
	0

	47
	1

	48
	1

	49
	0

	50
	0

	51
	0

	52
	0

	53
	0

	54
	0

	55
	0

	56
	0

	57
	0

Ellenőrzés:
K6 HATÁRESETEK – RÉSZLETES INDOKLÁS
🔹 O(1) → K6 = 1
Miért határeset?
· Általános VBA/Excel feladat
· CSV/fájl feldolgozás implicit jelen van
Miért nem 0?
· Nem szerepel Workbooks.Open
· Nem kéri explicit Excel-munkafüzetként való megnyitást
Miért nem 2?
· Nem kér FSO / Stream / memória-alapú feldolgozást
➡️ Semleges megfogalmazás → 1 pont (helyes)

🔹 O(4) → K6 = 1
Miért határeset?
· Excel VBA környezet
· Külső fájl feldolgozása
Kulcspont
· A hogyan nincs specifikálva
➡️ Semleges módszertan → 1 pont

🔹 O(17) → K6 = 1
Miért határeset?
· CSV feldolgozásról beszél
· Automatizmusokra utal
Miért nem 0?
· Nincs Excel-megnyitás előírva
➡️ 1 pont korrekt

🔹 O(18) → K6 = 1
Hasonló logika, mint O(17).
➡️ Semleges prompt → 1 pont

🔹 O(29) → K6 = 2
Ez az egyetlen valódi „pozitív” kivétel
Miért?
· Explicit módon szerepel:
· memória-alapú feldolgozás VAGY
· FSO / Stream / megnyitás nélküli működés
➡️ Ez textbook K6=2

🔹 O(36) → K6 = 1
Miért határeset?
· Haladó VBA feladat
· Fájlolvasás indirekt
De:
· Nem írja le hogyan kell a fájlt megnyitni
➡️ 1 pont

🔹 O(39) → K6 = 1
Miért?
· Excel-közeli kontextus
· Feldolgozás fókusz
➡️ módszertan nem rögzített → 1 pont

🔹 O(42) → K6 = 1
Miért?
· Automatizmus
· CSV / fájl adatkezelés
➡️ nincs explicit módszer → 1 pont

🔹 O(47) → K6 = 1
Miért határeset?
· Hatékonysági szempontok implicit jelen vannak
· De nem mondja ki a technikát
➡️ 1 pont indokolt

🔹 O(48) → K6 = 1
Ugyanaz a kategória, mint O(47).
➡️ 1 pont

Konklúzió:
Az algoritmizálás folyamatában az LLM-nek adott instrukciók kulcsfontosságúak és meg kell feleljenek a „knuth-i” kritériumnak, ha ez egyáltalán lehetséges. Ha LLM segítségét vesszük igénybe és az algoritmikus gondolkodás fordítását nem a saját agyunk végzi, hanem egy nyelvi modell „agya”, felmerül annak a lehetősége, hogy minden esetben közelítő, de pontosan nem az előre kigondolt eredményt kapjuk. Ami miből fakad? Véleményem szerint abból a kommunikációs csatornából, ami az agyunk és az algoritmusunk közé érkezett egy nyelvi modell képében és ezt a fordítási folyamatot könnyíti meg, de habosítja. Még a legtökéletesebb promptal is. Ez az esettanulmány ezt nem bizonyítja, viszont véleményem szerint érzékelteti.

