A korábbi elemzés alapján az ideális prompt a legfontosabb követelményeket (XLSM mentés, webes elérés, pontos sor-számlálás) egyesítő kombináció, amelynek leginkább megfelelő output a ZORR4I_A fájlban található makró (Output 2) és a hozzá tartozó segédfüggvények. [cite_start]Ez a megoldás ötvözi a robusztus, memória-alapú sor-számlálást és az új XLSM fájl létrehozását/mentését, kódja segédfüggvényekkel is tagolt.
Esettanulmány
Prompt 1 + Output 1 (ZORR4I_A.docx)
Prompt (1): [cite_start]Chatgpt Prompt: Szeretnék készíteni egy Excel makrót, ami egy adott webes könyvtárból (https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/) összegyűjti az ott található összes CSV fájlt, majd fájlonként megszámolja, hogy hány sor van bennük. [cite_start]A feladat az lenne, hogy a makró automatikusan: elérje a megadott könyvtárat, felismerje az összes .csv kiterjesztésű fájlt, letöltse vagy beolvassa őket, megszámolja minden egyes CSV állományban a sorok számát, majd egy új Excel (.xlsm) fájlban listázza: melyik fájlban hány sor található. [cite_start]A cél tehát egy olyan egyetlen makró, ami végigmegy a könyvtáron és elkészíti a „fájlnév → sorok száma” összesítést egy Excel táblában.
Option Explicit
' Fő eljárás: letölti a könyvtár indexét, kigyűjti a .csv linkeket,
' majd letölti minden csv-t és megszámolja a sorokat.
' Végül készít egy új munkafüzetet és ment .xlsm-ként.
Public Sub CountCsvRowsFromWebDirectory()
Dim baseUrl As String
baseUrl = "https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/"

Dim html As String
html = HttpGetAsString(baseUrl)
If html = "" Then
MsgBox "Nem sikerült lekérni a könyvtár indexét: " & baseUrl, vbCritical
Exit Sub
End If

Dim csvUrls As Collection
Set csvUrls = ExtractCsvUrlsFromDirectoryHtml(html, baseUrl)
If csvUrls.Count = 0 Then
MsgBox "Nincs .csv fájl a könyvtárban vagy nem találhatóak linkek.", vbInformation
Exit Sub
End If

' Új munkafüzet létrehozása eredménynek
Dim wb As Workbook
Set wb = Workbooks.Add(xlWBATWorksheet)
Dim ws As Worksheet
Set ws = wb.Worksheets(1)
ws.Name = "CSV_RowCounts"
ws.Range("A1").Value = "FileName"
ws.Range("B1").Value = "RowCount"
ws.Range("C1").Value = "Status"

Dim i As Long: i = 2
Dim url As Variant
For Each url In csvUrls
Dim fname As String
fname = GetFileNameFromUrl(CStr(url))
ws.Cells(i, 1).Value = fname
On Error Resume Next
Dim content As String
content = HttpGetAsString(CStr(url))
If Err.Number <> 0 Then
ws.Cells(i, 2).Value = "ERROR"
ws.Cells(i, 3).Value = "HTTP error: " & Err.Number & " - " & Err.Description
Err.Clear
Else
If content = "" Then
ws.Cells(i, 2).Value = 0
ws.Cells(i, 3).Value = "OK (0 bytes)"
Else
Dim rows As Long
rows = CountLinesInString(content)
ws.Cells(i, 2).Value = rows
ws.Cells(i, 3).Value = "OK"
End If
End If
On Error GoTo 0
i = i + 1
Next url

' Oszlopok szélessége
ws.Columns("A:C").AutoFit

' Mentés .xlsm-ként ugyanabba a mappába, ahol a jelenlegi munkafüzet van
Dim savePath As String
savePath = Application.DefaultFilePath
If savePath = "" Then savePath = ThisWorkbook.Path
If savePath = "" Then savePath = Environ$("USERPROFILE")
Dim fnameOut As String
fnameOut = savePath & Application.PathSeparator & "csv_row_counts.xlsm"

Application.DisplayAlerts = False
wb.SaveAs Filename:=fnameOut, FileFormat:=xlOpenXMLWorkbookMacroEnabled
Application.DisplayAlerts = True

MsgBox "Kész. Eredmény mentve: " & fnameOut, vbInformation
End Sub
' --
' Segédfüggvények
' --
Private Function HttpGetAsString(url As String) As String
' VBS XMLHTTP használata egyszerű GET-hez
On Error GoTo errHandler
Dim xhr As Object
Set xhr = CreateObject("MSXML2.XMLHTTP")
xhr.Open "GET", url, False
xhr.setRequestHeader "User-Agent", "ExcelVBA/1.0"
xhr.send
If xhr.Status = 200 Then
HttpGetAsString = xhr.responseText
Else
HttpGetAsString = ""
End If
Exit Function
errHandler:
HttpGetAsString = ""
End Function
Private Function ExtractCsvUrlsFromDirectoryHtml(html As String, baseUrl As String) As Collection
' Egyszerű HTML-parsing: kigyűjtjük az href="*.csv" linkeket
Dim col As New Collection
Dim pos As Long: pos = 1
Dim href As String
Dim lcHtml As String: lcHtml = LCase$(html)
Do
pos = InStr(pos, lcHtml, "href=")
If pos = 0 Then Exit Do
Dim startQ As Long: startQ = pos + 5
Dim quoteChar As String
quoteChar = Mid$(html, startQ, 1)
If quoteChar = """" Or quoteChar = "'" Then
Dim endQ As Long
endQ = InStr(startQ + 1, html, quoteChar)
If endQ = 0 Then Exit Do
href = Mid$(html, startQ + 1, endQ - startQ - 1)
pos = endQ + 1
Else
' nincs idézőjel (ritka) -> keressünk szóközt
Dim nextSp As Long
nextSp = InStr(startQ, html, " ")
If nextSp = 0 Then Exit Do
href = Mid$(html, startQ, nextSp - startQ)
pos = nextSp + 1
End If
href = Trim$(href)
If Len(href) > 4 Then
If LCase$(Right$(href, 4)) = ".csv" Then
' Ha relatív út, egészítsük ki
If Left$(href, 4) = "http" Then
col.Add href
Else
Dim full As String
If Right$(baseUrl, 1) <> "/" Then baseUrl = baseUrl & "/"
full = baseUrl & href
col.Add full
End If
End If
End If
Loop
Set ExtractCsvUrlsFromDirectoryHtml = col
End Function
Private Function GetFileNameFromUrl(url As String) As String
Dim p As Long
p = InStrRev(url, "/")
If p = 0 Then GetFileNameFromUrl = url Else GetFileNameFromUrl = Mid$(url, p + 1)
End Function
Private Function CountLinesInString(s As String) As Long
' Sorok száma: számoljuk a CR/LF előfordulásokat
If Len(s) = 0 Then
CountLinesInString = 0
Exit Function
End If
Dim i As Long
Dim cnt As Long: cnt = 0
Dim pos As Long: pos = 1
Dim crPos As Long
Do
crPos = InStr(pos, s, vbCrLf)
If crPos > 0 Then
cnt = cnt + 1
pos = crPos + 2
Else
Exit Do
End If
Loop
' ha nincs CRLF, de van LF vagy CR, kezeljük azokat is
If cnt = 0 Then
' LF
cnt = UBound(Split(s, vbLf)) + 1
Else
' az utolsó sor, ha nem CRLF-n végződik, akkor +1
If Right$(s, 2) <> vbCrLf Then cnt = cnt + 1
End If
CountLinesInString = cnt
End Function

Konklúzió
A legjobb prompt szövege és az idealitás indoklása az LLM-támogatás alapján a szerző által véglegesített szöveg formájában!
A legjobb prompt szövege
Az optimális prompt a robusztus számlálási pontosságot és az XLSM mentési igényt ötvöző kérés, a korábbi kimenetek tapasztalatai alapján finomítva:
Készíts egy Excel VBA makrót, amely egyetlen futtatással oldja meg a következő feladatot. A makró érje el a webes könyvtárat: https://miau.my-x.hu/miau/329/prompt_plan_ranking/csv/. 1. Gyűjtse ki az összes *.csv kiterjesztésű fájl hivatkozását a könyvtár HTML-listájából (használjon late binding objektumokat). 2. Minden egyes CSV fájl tartalmát töltse le a memóriába (HTTP kérés segítségével). 3. Számolja meg PONTOSAN a sorok számát. A számlálás előtt normalizálja az összes sortörés karaktert (CRLF, LF, CR) egyetlen karakterre, hogy a számlálás platform- és sortörés-független legyen. 4. Hozzon létre egy új munkafüzetet, és az első lapjára listázza ki az eredményt (fájlnév és sorszám). 5. A makró mentse el az új munkafüzetet XLSM formátumban a felhasználó által választott helyre (GetSaveAsFilename). A megoldás egyetlen Sub eljárásból álljon, segédfüggvények megengedettek a modulon belül.
Az idealitás indoklása az LLM-támogatás alapján
[cite_start]A prompt idealitása abban rejlik, hogy a korábbi LLM-kimenetekből származó legjobb gyakorlatokat és a feladat összes szigorú kritériumát egyesíti.

