Giba László Tamás – WLSPEP – 2025.12.14.

[bookmark: __RefHeading___Toc72_2627052925]SP3 – A kodok.txt szerepe az SP1-ben és hiánya az SP2-ben, valamint egy lehetséges SP4-feladat vázlata

Tartalomjegyzék
SP3 – A kodok.txt szerepe az SP1-ben és hiánya az SP2-ben, valamint egy lehetséges SP4-feladat vázlata	1
1. Kontextus: A-, B-, C-, D-feladatok és az SP1–SP2–SP3 kapcsolata	2
2. kodok.txt	2
3. Miért szükséges a kodok.txt az SP1-ben?	2
3.1. Egyértelmű azonosítás és visszakövethetőség	2
3.2. Kutathatóság, csoportosíthatóság, statisztika	3
3.3. Minőségbiztosítás és redundáns ellenőrzés SP1-ben	3
4. Miért nincs külön elvárva kodok.txt az SP2-ben?	3
5. Egy lehetséges SP4-feladat vázlata a kodok.txt felhasználására	4
6. Összegzés	4


[bookmark: __RefHeading___Toc74_2627052925]1. Kontextus: A-, B-, C-, D-feladatok és az SP1–SP2–SP3 kapcsolata

A prompt_plan_ranking feladatsorban az A-, B-, C- és D-feladatok egymásra épülnek, és ezeket egészítik ki a speciális jegyszerző feladatok (SP1, SP2, SP3, később SP4 -– SP5!!! – vö. https://miau.my-x.hu/miau/329/prompt_plan_ranking/b-gondolatkiserletek/VVH6TU_teljes_rangsor_B.docx, ill. https://miau.my-x.hu/miau/329/prompt_plan_ranking/b-gondolatkiserletek/SP3.xlsx).

Az A-feladatban minden hallgató egyetlen promptot tervezett, amellyel egy LLM (pl. ChatGPT, Copilot stb.) makrót generált. Ezek az A-feladatok adják a kb. 60 db „versengő objektumot” – a 60 különböző promptot (O(1)…O(60)). A B- és D-feladatokban már nem új promptot kell írni, hanem a meglévő promptokat kell különböző szempontok szerint versenyeztetni, rangsoroltatni, elemezni. A D1 feladatban a prompt.txt szerepét átveszi az output- macro.txt.

Az SP1 feladata, hogy a szétszórt A-feladatokból egy olyan egységes, standardizált kiinduló adatbázist készítsen, amelyre a későbbi feladatok (B, D, SP2, SP4) építeni tudnak. Ebben a folyamatban a D-szálat időben megelőző B-szálon kulcsfontosságú a prompt.txt és a kodok.txt.

2. Az SP1 két kimenő állománya: prompt.txt és kodok.txt (az SP2 esetén: csak az output-macro.txt)

Az SP1 kimenete két, egymással szorosan összetartozó fájl:

1) prompt.txt
- Minden sor egy versengő objektum:
O(i) = "idézet"
- Az O(i) az adott prompt azonosítója, az "idézet" pedig maga a prompt szövege, egységes formában.

[bookmark: __RefHeading___Toc76_2627052925]2. kodok.txt
- Minden sor egy rekord, vesszővel elválasztott mezőkkel:
O(i),NEPTUN-kód,prompt nyelve,elvárt macro jellege,LLM
- Azaz ugyanahhoz az O(i)-hez hozzárendeljük:
• melyik hallgatóhoz tartozik (Neptun-kód),
• milyen nyelven íródott a prompt (magyar, angol stb.),
• milyen makró-környezetre készült (pl. MS Office/Excel VBA, LibreOffice, stb.),
• melyik LLM-mel készült a megoldás (pl. ChatGPT, Copilot).

A két fájl együtt egy mini adatrendszert alkot: a prompt.txt tartalmazza az objektumok szövegét, a kodok.txt pedig az objektumok metaadatait.
A prompt.txt a kodok.txt és az output-macro.txt EGYÜTT egy rendszert alkot!

[bookmark: __RefHeading___Toc78_2627052925]3. Miért szükséges a kodok.txt az SP1-ben?

[bookmark: __RefHeading___Toc80_2627052925]3.1. Egyértelmű azonosítás és visszakövethetőség

Ha csak a prompt.txt létezne, benne az O(i) = "idézet" sorokkal, akkor nem derülne ki, hogy melyik promptot ki írta, nem látnánk, hogy melyik LLM-mel generálták, és hiányoznának a nyelvi/környezetbeli információk.

A kodok.txt biztosítja, hogy minden O(i) objektum mögött legyen:
• konkrét szerzőazonosítás (Neptun-kód),
• konkrét nyelvi kontextus (magyar/angol),
• konkrét technikai kontextus (Excel VBA, LibreOffice, stb.),
• konkrét LLM-információ (ChatGPT, Copilot, más).

Ez adminisztratív és didaktikai szempontból is fontos: a tanár vissza tudja keresni, melyik teljesítmény melyik hallgatóhoz tartozik, átlátható a jegyek és a későbbi visszajelzések kiosztása, problémás eseteknél (pl. nagyon hasonló promptok) megőrizhető a transzparencia.

[bookmark: __RefHeading___Toc82_2627052925]3.2. Kutathatóság, csoportosíthatóság, statisztika

A kodok.txt metaadatai lehetővé teszik, hogy a későbbi feladatok ne csak tartalmi szinten, hanem különböző dimenziók!!! mentén is elemezzék a promptokat:
• LLM szerinti bontás: hogyan teljesítenek a ChatGPT-vel írt promptok a Copilot-tal írtakhoz képest?
• Nyelv szerinti bontás: magyar vs. angol promptok – van-e különbség az LLM-ek válaszaiban vagy pontosságában?
• Makrótípus szerinti bontás: MS Office/Excel VBA-ra célzott promptok vs. LibreOffice-ra célzottak – melyik környezetre nehezebb jó promptot írni?

Ezek a szempontok fontosak például a B- és!!! D-feladat mélyebb elemzésekor, illetve egy későbbi SP4-feladatban, ahol már a teljes „adatbázist” elemezzük.
Vagyis mi a kapcsolat a kodok.txt és a C->SP2->D1-szál között? 😊

[bookmark: __RefHeading___Toc84_2627052925]3.3. Minőségbiztosítás és redundáns ellenőrzés SP1-ben

Az SP1-ben két hallgató dolgozik ugyanazon feladaton, egymást ellenőrizve. Ehhez szükség van egy egyértelmű listára arról, hogy melyik O(i) objektum létezik, és melyikhez milyen Neptun-kód, nyelv, LLM, makrótípus tartozik.

A kodok.txt ebben segít: ellenőrizhető, hogy nem maradt ki egyetlen prompt sem, látszik, ha véletlenül duplán vagy rossz Neptun-kóddal szerepel valami, és lehetőség van automatikus ellenőrzésekre (pl. script vagy táblázatkezelő segítségével).

[bookmark: __RefHeading___Toc86_2627052925]4. Miért nincs külön elvárva kodok.txt az SP2-ben?

Az SP2 akkor indul, amikor valaki a C-feladat során ráérez arra, mi a legtriviálisabb alternatívája a promptok versenyének. Az SP2 nem az adatstruktúra létrehozásáról szól, hanem arról, hogy hogyan lehet alternatív, egyszerűbb vagy elegánsabb versenyeztetési mechanizmust kitalálni ugyanarra az objektumhalmazra. Alternatíva = macro-k (vs. prompt-ok)

Az SP2 szempontjából a prompt.txt és a kodok.txt már elkészült az SP1-ben, ezek az adatok adottnak tekinthetők. SP2-ben a hangsúly nem azon van, hogy még egyszer legyártsuk a kodok.txt-t, hanem azon, hogy milyen más módon tudjuk értelmezni, versenyeztetni, rangsorolni a promptokat, és hogyan tudunk a meglévő struktúrára új „játékszabályokat” építeni. hanem azon, hogy …???...<--ezt a választ keressük napok óta! 😊

Másképp fogalmazva:
• SP1 = adat-előkészítés + metaadat-struktúra létrehozása (itt kötelező a kodok.txt mint output).
• SP2 = módszertani/architekturális kísérlet ugyanarra az adatbázisra építve (itt a kodok.txt már csak input, nem leadandó termék).

Ezért nem kérik külön!!! az SP2-ben a kodok.txt leadását: feltételezik, hogy az SP1 eredményeként már rendelkezésre áll, SP2-ben „csak” felhasználjuk, de nem ez a feladat kimenete. PONTOSAN! A prompt.txt és az macro.txt egymás párja, s elegendő egyetlen egy kodok.txt a B-szál és a D1 szál kapcsán, s közben a C-szálon ÚJ alternatívák merülhettek volna fel már sokakban… 😊

[bookmark: __RefHeading___Toc88_2627052925]5. Egy lehetséges SP4-feladat vázlata a kodok.txt felhasználására

Az SP3 záró része, hogy aki felfogja a kodok.txt jelentőségét, az SP4 feladatot is képes legyen megfogalmazni úgy, hogy az épp erre a fájlra támaszkodjon.

Egy lehetséges SP4-feladat vázlata:

Cél:
Olyan „mini elemző rendszer” tervezése (és részbeni megvalósítása), amely bemenetként használja a prompt.txt-t és a kodok.txt-t, valamint a B- vagy D-feladatban keletkező prompt és macro rangsorokat és pontszámokat (pl. ranking.txt), kimenetként pedig statisztikákat és vizualizációkat ad a promptok minőségéről és az LLM-ek teljesítményéről. Ami a prompt és a macro direkt módon már létező objektumhalmazai mellé ÚJ objektumokat kellene, hogy felismerni engedjen…

Bemenetek:
1. prompt.txt – O(i) = "prompt szövege"
2. kodok.txt – O(i),Neptun-kód,nyelv,makrótípus,LLM
3. ranking.txt (vagy hasonló) – O(i),pontszám,rangsor,hibaszám,...

Feladat:
• Az O(i) azonosító alapján összekapcsolni a három forrást.
• Legalább az alábbi kimutatásokat előállítani:
– LLM-enkénti átlagos pontszám / rangsorbeli helyezés,
– nyelv szerinti összehasonlítás (magyar vs. angol promptok átlagos teljesítménye),
– makrótípus szerinti bontás (Excel VBA vs. LibreOffice, stb.),
– esetleges anomáliák (pl. nagyon jó prompt, de gyenge makróeredmény, vagy fordítva).
• A megvalósítás történhet klasszikus programozással (pl. Python + pandas, Excel makró, SQL), vagy LLM-es „elemző prompttal”, amely a három bemenő fájlt kapja szövegesen, és összefoglaló jelentést készít.

Kimenet:
• rövid rendszerterv (hogyan néz ki az adatfolyam, milyen modulok vannak),
• a választott megoldás (script vagy LLM-prompt) leírása,
• legalább néhány konkrét kimutatás (táblázat/grafikon) a fenti szempontok szerint.

Ezzel az SP4 egyértelműen a kodok.txt aktív felhasználására épül, nem csak a létrehozására. Megmutatja, hogy a metaadatok milyen értéket adnak a későbbi, rendszerszintű értékeléshez.

[bookmark: __RefHeading___Toc90_2627052925]6. Összegzés

Az SP1-ben a kodok.txt nélkülözhetetlen, mert a promptok azonosítása, a hallgatókhoz, nyelvhez, LLM-hez, makrótípushoz való kötése és a későbbi elemzések előkészítése ezen múlik.

Az SP2-ben a kodok.txt már rendelkezésre áll, ezért nem leadandó output; itt a hangsúly a verseny „játékterének” újratervezésén, a módszertanon és az architektúrán van.

Az SP3 ennek felismeréséről szól, az SP4 pedig egy olyan feladat, amely a kodok.txt-re építve statisztikai és minőségi elemzéseket végez a teljes prompt-állományon.
