1) Szempont B vs D1 = milyen úton jutsz el a megoldásig
· B (elsődleges ág): te magad építed fel a prompt-sorozatot (prompt(1)…prompt(n) + outputok), majd kiválasztod a legjobb promptot és indoklod. A kiírás egyértelműen kéri a lépésenkénti LLM-támogatott levezetést és a végső indoklást. 
EJIOIM_C&D
· D1 (=D): nem új feladattípus, hanem a C-ben előálló alternatívák egyikét oldod meg a B paraméterei között (ugyanaz a docx-forma/fejezetlogika, csak a kiindulópont “alternatívából” jön).
➡️ Következmény: B és D1 közt főleg a “kiindulás” különbözik (önálló prompt-iteráció vs. C-alternatívából választott irány), de a beadási keret B-s marad.
2) Szempont: rendszertervezés vs szoftverarchitektúra = milyen tartalmat gyártasz
A B-feladat kiírása jelzi, hogy mindkét tárgyhoz kapcsolódik (rendszertervezés ÉS szoftverarchitektúrák). 
EJIOIM_C&D

Itt a különbség nem az “ág”, hanem az output típusa:
· Rendszertervezés (system / systems engineering nézőpont): a teljes rendszer (hardver+ szoftver + emberek + folyamatok + környezet + üzemeltetés) kereteit nézi. 
· Szoftverarchitektúra: a szoftver belső szerkezete, komponensek, kapcsolatok, döntések. Az ISO/IEC/IEEE 42010 szerint az architektúra a rendszer alapvető koncepciói/tulajdonságai a környezetében, az elemekben és kapcsolatokban megtestesülve. iso-architecture.org+1
A SEI (Clements/Bass/Kazman) hangsúlyozza: komponensek, kapcsolatok, korlátozások és a döntések indoklása a lényeg. sei.cmu.edu
Hogyan áll össze a kettő? (2×2 “példamátrix”)
Vegyük a CSV sor-számláló pipeline témát (amit már csinálsz a prompt_plan_ranking környezetben). A projekt mappaszerkezete is ezt a több “ágat” mutatja. MIAU
A) B + rendszertervezés (önálló prompt-iteráció, rendszer-szintű output)
Példa prompt-fókusz: környezet, platformok (VBA/LO/GAS), IO-adapter, URL-lista feldolgozás, hibák, üzemeltetés.
Tipikus output-részlet: „Kontextus és hatókör”, „Célok”, „Korlátok”, „Folyamatlépések”, „Hibakezelés”, „Kockázatok”.
B) B + szoftverarchitektúra (önálló prompt-iteráció, belső felépítés output)
Példa prompt-fókusz: rétegek (Core vs Adapter), interfészek, függőségek, modulhatárok, tesztelhetőség.
Tipikus output-részlet: komponensdiagram leírás szövegesen: Core::ParseCsvLines, Adapter::FetchUrlList, Adapter::WriteSheet, hibaágak, szerződés (interface) definíciók.
C) D1 + rendszertervezés (C-alternatívából választasz, de B-keretben dokumentálsz)
Példa: C-ben született 3 alternatíva: (1) közvetlen HTTP GET, (2) letöltés cache-be, (3) regex-es HTML link kinyerés.
D1-ben kiválasztod mondjuk a cache-es megoldást, és ugyanúgy prompt(1)…prompt(n) + outputok + konklúzió formában dokumentálod, csak a “választott alternatíva” a magja.
D) D1 + szoftverarchitektúra (C-alternatíva + architektúra-fókusz)
Ugyanez, csak itt az outputban a választott alternatívát architekturális döntéssé emeled: pl. „CacheRepository bevezetése”, „Adapter felelősség bővítése”, „Core tisztán platformfüggetlen marad”.
1 mondatos összefoglaló
· B vs D1: a kiindulási út különbözik (saját iteráció vs C-alternatíva),
· rendszerterv vs architektúra: az output tartalma különbözik (teljes rendszerkeret vs szoftver belső szerkezet),
és a kiírás szerint mindkét tárgyhoz releváns ugyanaz a beadási logika.

Az eltérés lényege:
· B-feladat (elsődleges): a „saját” B-s feladatot kell megoldanod a kiírt keretek szerint (LLM-támogatott lépésenkénti prompt-variálás + a legjobb prompt indokolt kiválasztása, és a leadandó docx formátuma/fájlnév-szabályai).
· D-feladat (harmadlagos): nem új, külön feladat, hanem a C-feladatban előállított alternatívák közül kiválasztasz egy megoldási irányt, és azt valósítod meg, de ugyanúgy a B-feladat paraméterei között.
Vagyis a D-ben a „mi alapján dolgozol” változik (C-ből származó alternatíva), viszont a leadandó, formai és tartalmi B-követelmények (prompt(1)+output(1)…; Konklúzió; docx; név: Neptun_kód + _B) változatlanok.

