SP5 megoldás:
https://miau.my-x.hu/miau/329/prompt_plan_ranking/b-gondolatkiserletek/VVH6TU_teljes_rangsor_B.docx

Prompt:
Vedd alapul ezt a dokumentumot: https://miau.my-x.hu/miau/329/prompt_plan_ranking/b-gondolatkiserletek/VVH6TU_teljes_rangsor_B.docx
Majd az ebben található pontozási rendszerből(K1-K6) mindegyikére írj egy algoritmust amit ha ráeresztek erre a dokumentumra: https://miau.my-x.hu/miau/329/prompt_plan_ranking/b-gondolatkiserletek/prompt_.txt_ akkor azt kiértékeli és felállítja a legjobb rangsort.
CHATGPT-től kapott válasz:
Oké — a prompt_.txt_ fájl tényleg több alternatív promptot tartalmaz O(1)= ... O(n)= ... formában, ezért erre érdemes egy automata rangsorolót ráengedni.

Az általad kért megoldás: K1–K6 mindegyikéhez algoritmikus (0/1/2 pontos) pontozás, majd összpontszám alapján rangsor.

K1–K6 pontozó algoritmusok (0/1/2)

Az alábbiak mind szöveg-alapú heurisztikák, amik a promptban keresett konkrét „bizonyítékok” alapján adnak pontot:

K1 – Input pontos megadása
· 2 pont: van forrás (URL vagy mappa/útvonal) ÉS kimondja, hogy az összes .csv kell onnan (pl. „az adott könyvtár összes .csv fájlja”).
· 1 pont: van forrás + .csv említése, de nincs „összes / adott mappa” egyértelműen.
· 0 pont: nincs tiszta bemenet, nincs .csv fókusz.

K2 – Fájllista előállítása
· 2 pont: leírja hogyan listázza (pl. Dir(), FileSystemObject, HTML linkek kigyűjtése, XMLHTTP, stb.) ÉS szerepel a listázás szándéka.
· 1 pont: csak módszer vagy csak annyi, hogy „listázza”.
· 0 pont: nincs fájllista-logika.

K3 – Sor fogalma / sorok száma
· 2 pont: kéri a sorok számát ÉS megadja a sorolvasás módját (pl. ReadLine, TextStream, EOF, vbCrLf/vbLf, üres sor kezelése).
· 1 pont: kéri a sorszámot, de nincs rendesen definiálva (pl. „számold meg a sorokat”).
· 0 pont: nincs sor-számlálás.

K4 – Output forma/struktúra
· 2 pont: konkrét kimeneti struktúrát kér (oszlopok/fejléc) ÉS rangsort/rendezést is.
· 1 pont: van kimenet, de nincs rendes struktúra/rendezés.
· 0 pont: nincs értelmezhető output.

K5 – Hibakezelés / ellenőrzések
· 2 pont: explicit hibakezelés + mit csináljon hiba esetén (kihagy/üzenet/log/folytatás).
· 1 pont: hibakezelés említve, de homályos.
· 0 pont: semmi hibakezelés.

K6 – Hatékonyság (memória vs. Excelben megnyitás)
· 2 pont: kimondja, hogy ne nyissa meg a CSV-ket Excelben, hanem memóriából/streamből olvassa.
· 1 pont: semleges (nem derül ki tisztán).
· 0 pont: kifejezetten Workbooks.Open / import / megnyitás jelleg.

Kész rangsoroló Python script (futtatható)

Elkészítettem egy scriptet, ami:
· beolvassa a prompt_.txt_ fájlt (az O(n)= blokkokat),
· minden promptra kiszámolja a K1–K6 pontokat,
· összegzi, rangsorolja,
· kiexportálja .xlsx vagy .csv fájlba.

Letöltés:
· rank_prompts.py
· prompt_ranking_results.xlsx
· prompt_ranking_results.csv

Futtatás
pip install pandas openpyxl
python rank_prompts.py --input prompt_.txt_ --out prompt_ranking_results.xlsx

Nálam lefutott rangsor (TOP 15)
	id
	total
	K1
	K2
	K3
	K4
	K5
	K6

	25
	9
	2
	2
	2
	2
	0
	1

	43
	9
	2
	2
	2
	2
	1
	0

	10
	8
	2
	2
	2
	1
	0
	1

	16
	8
	2
	1
	2
	2
	0
	1

	45
	8
	2
	2
	2
	1
	0
	1

	7
	7
	2
	1
	1
	1
	1
	1

	23
	7
	2
	2
	1
	1
	0
	1

	39
	7
	2
	2
	1
	1
	0
	1

	48
	7
	2
	2
	1
	1
	0
	1

	55
	7
	2
	1
	2
	1
	0
	1

	6
	6
	1
	0
	2
	1
	1
	1

	12
	6
	2
	0
	1
	1
	0
	2

	15
	6
	2
	2
	0
	1
	0
	1

	21
	6
	2
	1
	1
	1
	0
	1

	28
	6
	2
	1
	1
	1
	0
	1

Ha szeretnéd, a következő lépés az, hogy a tanári (VVH6TU) táblázat manuális pontjaihoz “ráhangoljuk” a kulcsszavakat/súlyokat (pl. K6-nál szigorúbb büntetés a megnyitásra), hogy még jobban egyezzen az elvárt értékeléssel.

Python kód a rank_prompts.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Prompt-rangsoroló a VVH6TU_teljes_rangsor_B.docx K1–K6 szempontjai alapján.

Bemenet: prompt_.txt_ (O(n)= ... formátumú fájl; JS-szerű idézett sztringek + konkatenációk is kezelve)
Kimenet: .csv és/vagy .xlsx rangsor (összpontszám + K1..K6 + rövid előnézet).

Használat:
 python rank_prompts.py --input prompt_.txt_ --out prompt_ranking_results.xlsx
"""

from __future__ import annotations
import argparse
import re
from dataclasses import dataclass
from typing import Dict, List, Tuple, Iterable, Optional

try:
 import pandas as pd
except ImportError as e:
 raise SystemExit("Ehhez a szkripthez kell a pandas: pip install pandas openpyxl") from e

--- Parser: O(n)= ... blokk -> prompt szöveg --------------------------------

O_HDR = re.compile(r'O\((\d+)\)\s*=\s*', re.M)

def _unescape_basic(s: str) -> str:
 # alap JS-escape-ek: ne próbáljon meg minden unicode escape-et dekódolni,
 # mert előfordulhatnak olyan szekvenciák is (pl. \N), amik Pythonban hibát dobnának.
 return (s
 .replace(r'\n', '\n')
 .replace(r'\t', '\t')
 .replace(r'\"', '"')
 .replace(r"\'", "'")
 .replace(r'\\', '\\')
)

def parse_js_string_concat(block: str) -> str:
 """
 Kiszedi és összefűzi a blockban található "..." sztringliterálokat.
 Ha nincs ilyen, fallback: a teljes blokkot visszaadja.
 """
 segs = re.findall(r'"((?:\\.|[^"\\])*)"', block, flags=re.S)
 if segs:
 joined = ''.join(segs)
 joined = _unescape_basic(joined)
 return joined.strip()
 return block.strip()

def load_prompts_from_prompt_txt(path: str) -> List[Tuple[int, str]]:
 raw = open(path, 'r', encoding='utf-8', errors='replace').read()
 matches = list(O_HDR.finditer(raw))
 if not matches:
 raise ValueError("Nem találok O(n)= fejléceket a fájlban – biztosan a prompt_.txt_ a bemenet?")

 prompts: List[Tuple[int, str]] = []
 for i, m in enumerate(matches):
 pid = int(m.group(1))
 start = m.end()
 end = matches[i+1].start() if i + 1 < len(matches) else len(raw)
 block = raw[start:end].strip()
 prompts.append((pid, parse_js_string_concat(block)))
 return prompts

--- K1..K6 pontozás (0/1/2) ---

KW = {
 "k1_url": [r'https?://', r'\bURL\b', r'weboldal', r'szerver', r'link', r'href', r'http'],
 "k1_folder": [r'könyvtár', r'mappa', r'folder', r'directory', r'path', r'útvonal', r'\\', r'/'],

 "k2_listing_methods": [
 r'\bDir\(', r'FileSystemObject', r'Scripting\.FileSystemObject', r'\bFSO\b', r'GetFolder', r'\bFiles\b',
 r'MSXML2\.XMLHTTP', r'WinHttp', r'ADODB\.Stream', r'HTMLDocument', r'RegExp', r'\.Links', r'InStr.*href'
],
 "k2_listing_words": [r'listáz', r'kilistáz', r'gyűjt', r'összegyűjt', r'fájlok neve', r'állományok neve',
 r'index', r'directory listing', r'linkek? kigyűjt'],

 "k3_line_methods": [
 r'ReadLine', r'Line Input', r'TextStream', r'EOF', r'vbCrLf', r'vbLf', r'Split\(.+vb', r'Split\(.+Chr',
 r'soronként', r'üres sor', r'trim', r'sorvége', r'CRLF', r'LF'
],

 "k4_output": [
 r'munkalap', r'worksheet', r'oszlop', r'cell', r'fejléc', r'táblázat', r'eredmény', r'export',
 r'rendez', r'sort', r'rangsor', r'összesen', r'sorok száma', r'row count'
],

 "k5_error": [r'On Error', r'hiba', r'error', r'kivétel', r'exception', r'Resume Next', r'napló', r'log',
 r'ellenőriz', r'validál', r'hiányzik', r'nem található', r'üzenet'],

 "k6_memory": [r'memóri', r'stream', r'buffer', r'ADODB\.Stream', r'ne nyissa meg', r'ne importál',
 r'Excel.*megnyitás nélkül', r'soronként olvas', r'line-by-line'],
 "k6_bad_open": [r'Workbooks\.Open', r'OpenText', r'megnyit', r'importál.*munkalap', r'külön munkalapra.*csv'],
}

def _has_any(text: str, patterns: Iterable[str]) -> bool:
 return any(re.search(p, text, flags=re.I | re.S) for p in patterns)

def score_k1(text: str) -> int:
 # input pontos megadása: honnan indulunk (URL / mappa), és hogy CSV-k listája kell.
 url = _has_any(text, KW["k1_url"])
 folder = _has_any(text, KW["k1_folder"])
 csv = _has_any(text, [r'\.csv', r'\bCSV\b'])
 allness = _has_any(text, [r'összes', r'mind', r'adott', r'ebben a', r'ebből'])
 if (url or folder) and csv and allness:
 return 2
 if (url or folder) and csv:
 return 1
 return 0

def score_k2(text: str) -> int:
 # fájllista előállítása: módszer + szándék
 method = _has_any(text, KW["k2_listing_methods"])
 words = _has_any(text, KW["k2_listing_words"])
 if method and words:
 return 2
 if method or words:
 return 1
 return 0

def score_k3(text: str) -> int:
 # sorok száma: "mi a sor", üres sorok, CRLF/LF, soronkénti olvasás
 explicit = _has_any(text, [r'sor(ok)? szám', r'line count', r'hány sor', r'sorainak szám'])
 method = _has_any(text, KW["k3_line_methods"])
 ignore_empty = _has_any(text, [r'üres sor', r'blank line', r'ne számolja.*üres', r'trim'])
 newline = _has_any(text, [r'vbCrLf', r'vbLf', r'CRLF', r'LF', r'sorvége'])
 if explicit and method and (ignore_empty or newline):
 return 2
 if explicit and (method or ignore_empty or newline):
 return 1
 if explicit:
 return 1
 return 0

def score_k4(text: str) -> int:
 # output formátum/struktúra: oszlopok, fejléc, rendezés/rangsor
 out = _has_any(text, KW["k4_output"])
 structure = _has_any(text, [r'két oszlop', r'A oszlop', r'B oszlop', r'Column', r'fejléc'])
 ranking = _has_any(text, [r'rendez', r'sort', r'rangsor', r'csökkenő', r'növekvő'])
 if out and structure and ranking:
 return 2
 if out and (structure or ranking):
 return 1
 if out:
 return 1
 return 0

def score_k5(text: str) -> int:
 # hibakezelés / hiányzó fájl / hálózati hiba
 err = _has_any(text, KW["k5_error"])
 robust = _has_any(text, [r'külön kezel', r'kezelje', r'hiba esetén', r'kihagy', r'folytatja', r'ellenőriz'])
 if err and robust:
 return 2
 if err:
 return 1
 return 0

def score_k6(text: str) -> int:
 # hatékonyság: ne nyissa meg a CSV-ket Excelben, inkább memória/stream
 mem = _has_any(text, KW["k6_memory"])
 bad = _has_any(text, KW["k6_bad_open"])
 if mem and not bad:
 return 2
 if mem and bad:
 return 1
 if bad:
 return 0
 return 1 # semleges (nem írja le, hogyan olvas) -> közepes

def score_all(text: str) -> Dict[str, int]:
 return {
 "K1": score_k1(text),
 "K2": score_k2(text),
 "K3": score_k3(text),
 "K4": score_k4(text),
 "K5": score_k5(text),
 "K6": score_k6(text),
 }

--- CLI / output --

def main() -> None:
 ap = argparse.ArgumentParser()
 ap.add_argument("--input", required=True, help="prompt_.txt_ fájl")
 ap.add_argument("--out", default="prompt_ranking_results.xlsx", help="kimenet (.xlsx vagy .csv)")
 ap.add_argument("--top", type=int, default=15, help="hány legjobb promptot írjon ki a konzolra")
 args = ap.parse_args()

 prompts = load_prompts_from_prompt_txt(args.input)

 rows = []
 for pid, txt in prompts:
 sc = score_all(txt)
 total = sum(sc.values())
 preview = re.sub(r"\s+", " ", txt)[:220]
 rows.append({"id": pid, "total": total, **sc, "len": len(txt), "preview": preview})

 df = pd.DataFrame(rows).sort_values(
 ["total", "K1", "K2", "K3", "K4", "K5", "K6", "len"],
 ascending=False
)

 # konzol-top
 print(df.head(args.top).to_string(index=False))

 out = args.out.lower()
 if out.endswith(".csv"):
 df.to_csv(args.out, index=False, encoding="utf-8-sig")
 else:
 # default: xlsx
 try:
 import openpyxl # noqa: F401
 except ImportError as e:
 raise SystemExit("XLSX-hez kell az openpyxl: pip install openpyxl") from e
 with pd.ExcelWriter(args.out, engine="openpyxl") as writer:
 df.to_excel(writer, index=False, sheet_name="ranking")

if __name__ == "__main__":
 main()

