Flight Price Prediction – LLM-Output

PROMT:
alábbi kódot le tudnád írni pszeudó kódban:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
import numpy as np
Helyes megközelítésnek tekinthető az adathalmaz 80–20%-os arányú felosztása tanító és teszt adatokra, valamint a random_state paraméter alkalmazása a futtatások reprodukálhatóságának biztosítása érdekében.
--
1. ADATOK BEOLVASÁSA
--
Hiányosságként említhető, hogy a leírás nem tér ki a keresztvalidáció alkalmazására, a jellemzők fontosságának vizsgálatára, valamint a csoportok elemszámának ellenőrzésére. Kis elemszám esetén a modell által szolgáltatott eredmények megbízhatósága csökkenhet.
FONTOS: Az RF_teszt.xlsx legyen ugyanabban a mappában, mint ez a .py fájl
df = pd.read_excel("RF_teszt.xlsx")

Dátum oszlop átalakítása valódi dátummá
df["Date_of_Journey"] = pd.to_datetime(df["Date_of_Journey"])

Rendezés útvonal és dátum szerint
df = df.sort_values(
 ["Airline", "Source", "Destination", "Date_of_Journey"]
).reset_index(drop=True)
értékelés: Bár az előfeldolgozási lépések logikus sorrendben követik egymást, azok szükségessége nem kerül részletes indoklásra, és az időalapú átalakítások alkalmazásának magyarázata hiányos.

--
2. CÉL: EGY HÓNAPON BELÜL MIKOR A LEGOLCSÓBB?
--
Itt nem "hány nap múlva lesz olcsóbb" a cél,
hanem: a következő 30 napon belül MELYIK NAPON lesz a LEGKISEBB ár.
A célváltozó: offset napokban (0 = ma, 5 = 5 nap múlva, stb.)
Koncepcionális problémát jelent, hogy a célváltozó meghatározása jövőbeli árak ismeretét feltételezi, amelyek valós előrejelzési helyzetben nem állnak rendelkezésre. Ennek következtében a modell elsősorban múltbeli mintázatokat tanul meg, és nem tényleges jövőbeni árak előrejelzésére alkalmas.

def add_best_within_30_days(group: pd.DataFrame) -> pd.DataFrame:
 """
 Egy adott (Airline, Source, Destination) csoportra:
 minden sorhoz kiszámolja, hogy a következő 30 napon belül
 mikor lesz a legolcsóbb a jegy.
 """
 # biztosan időrendben legyen
 group = group.sort_values("Date_of_Journey").reset_index(drop=True)

 offsets = [] # hány nap múlva lesz a legolcsóbb (0 = aznap)
 best_prices = [] # mennyi lesz az a legkisebb ár (csak infó)

 for i in range(len(group)):
 current_date = group.loc[i, "Date_of_Journey"]

 # időablak: a következő 30 nap, beleértve a mait is
 max_date = current_date + pd.Timedelta(days=30)
 mask = (group["Date_of_Journey"] >= current_date) & (group["Date_of_Journey"] <= max_date)
 window = group.loc[mask]

 if window.empty:
 # nincs adat a következő 30 napban (ezeket később eldobjuk)
 offsets.append(None)
 best_prices.append(None)
 else:
 # a 30 napos ablakban keressük a legkisebb árat
 idx_min_price = window["Price"].idxmin()
 best_date = group.loc[idx_min_price, "Date_of_Journey"]
 best_price = group.loc[idx_min_price, "Price"]

 delta_days = (best_date - current_date).days
 offsets.append(delta_days)
 best_prices.append(best_price)

 group["Best_in_30_days_offset"] = offsets
 group["Best_in_30_days_price"] = best_prices
 return group

A csoportosítás (Airline, Source, Destination) szerint,
de NEM használunk groupby.apply-t, hogy elkerüljük a DeprecationWarningot.
groups = []
for _, g in df.groupby(["Airline", "Source", "Destination"]):
 g_with_target = add_best_within_30_days(g)
 groups.append(g_with_target)

df_model = pd.concat(groups, ignore_index=True)

Azok a sorok, ahol nem volt adat a következő 30 napban -> eldobjuk
df_model = df_model.dropna(subset=["Best_in_30_days_offset"]).copy()
df_model["Best_in_30_days_offset"] = df_model["Best_in_30_days_offset"].astype(int)

--
3. DÁTUMBONTÁS (év, hónap, nap) – hogy a modell érteni tudja az időt
--
df_model["Year"] = df_model["Date_of_Journey"].dt.year
df_model["Month"] = df_model["Date_of_Journey"].dt.month
df_model["Day"] = df_model["Date_of_Journey"].dt.day

Index újraszámozása, hogy X és df_model biztosan szinkronban legyen
df_model = df_model.reset_index(drop=True)

--
4. KATEGÓRIÁK KÓDOLÁSA (one-hot encoding)
Megfelelő megoldásnak tekinthető, hogy a kategorikus változók one-hot kódolása a célváltozó létrehozását követően történik, ezáltal elkerülhető az adatszivárgás.
--
df_encoded = pd.get_dummies(df_model, columns=["Airline", "Source", "Destination"])

--
5. FEATURES (X) ÉS TARGET (y)
--
Cél: hány nap múlva lesz a legolcsóbb a következő 30 napban
y = df_encoded["Best_in_30_days_offset"]

Bemenetek: minden más, ami hasznos, de
- nem a célváltozó
- és nem a nyers Date_of_Journey (abból már csináltunk Year/Month/Day mezőket)
X = df_encoded.drop(columns=["Best_in_30_days_offset", "Best_in_30_days_price", "Date_of_Journey"])
Adatszivárgás lehetősége áll fenn, mivel a Price oszlop bemeneti változóként szerepel, miközben a célváltozó szoros kapcsolatban áll az ár alakulásával. Ez torzíthatja a modell tanulási folyamatát, ezért indokolt lehet a modell kipróbálása a Price változó elhagyásával is.

--
6. TANÍTÓ ÉS TESZT ADATOK SZÉTVÁLASZTÁSA
--
X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=42
)

--
7. RANDOM FOREST REGRESSZOR TANÍTÁSA
--
rf = RandomForestRegressor(
 n_estimators=200,
 random_state=42
)
rf.fit(X_train, y_train)

--
8. MODELL ÉRTÉKELÉSE
--
y_pred = rf.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print("=== Modell értékelés ===")
print(f"MSE: {mse:.2f}")
print(f"R²: {r2:.3f}")
print()

--
9. KONKRÉT JEGY ELEMZÉSE
--
Itt döntöd el, melyik sort nézzük meg.
Pl.: 0 = első jegy, 10 = 11. jegy, stb.
ticket_index = 0 # EZT SZABADON ÁTÍRHATOD

if ticket_index < 0 or ticket_index >= len(df_model):
 raise ValueError(f"Hibás ticket_index: {ticket_index}, a df_model hossza: {len(df_model)}")

A bemenet, amit a modell lát (one-hot kódolva):
sample_X = X.iloc[[ticket_index]]

Eredeti jegy adatai (szép kiíráshoz):
original_row = df_model.iloc[ticket_index]
original_date = original_row["Date_of_Journey"]
original_price = original_row["Price"]
airline = original_row["Airline"]
source = original_row["Source"]
destination = original_row["Destination"]

Előrejelzés:
pred_offset = rf.predict(sample_X)[0]
rounded_offset = int(round(pred_offset))

A "legolcsóbb" nap dátuma a következő 30 napban:
best_date_pred = original_date + pd.Timedelta(days=rounded_offset)
A regressziós eredmények kerekítése elfedi a bizonytalanságot, ezért diszkrét célváltozók esetén az osztályozás vagy intervallumkezelés előnyösebb.

print("=== Konkrét jegy elemzése ===")
print(f"Jegy indexe: {ticket_index}")
print(f"Légitársaság: {airline}")
print(f"Útvonal: {source} → {destination}")
print(f"Eredeti dátum: {original_date.date()}")
print(f"Eredeti ár: {original_price} ")

print()
print(f"Modell becslése szerint a következő 30 napban:")
print(f" • Eredeti becslés: {pred_offset:.2f} nap múlva lesz a legolcsóbb")
print(f" • Kerekítve: ~{rounded_offset} nap múlva")
print(f" • Várhatóan ekkor lesz a legolcsóbb dátum: {best_date_pred.date()}")
print()

Egyszerű „szöveges” értelmezés:
if rounded_offset == 0:
 print("A modell szerint már MOST (ezen a napon) közel a legolcsóbb a jegy a következő 30 napban.")
elif rounded_offset <= 7:
 print("A modell szerint az elkövetkező egy héten belül lesz a legolcsóbb a jegy.")
elif rounded_offset <= 30:
 print("A modell szerint később, de még 30 napon belül lesz a legolcsóbb a jegy.")
else:
 print("A modell szerint valószínűleg nem a következő 30 napon belül lesz igazán olcsó.")
Logikai ellentmondás figyelhető meg, mivel a célváltozó definíciója alapján annak értéke elméletileg kizárólag 0 és 30 közé eshet. Ennek ellenére egy regressziós modell képes a tanult értéktartományon kívüli becslésekre is, ami a jelenlegi megoldásban nincs megfelelően indokolva. Az ilyen esetek kezelése ezért ellentmondásra utalhat, mivel a modell viselkedése nincs összhangban a célváltozó valós korlátaival.

OUTPUT:

Íme a kód lépésről lépésre pszeudokódban, a program logikájára koncentrálva, Python-szintaxis nélkül.

1. Adatok beolvasása és előkészítése
ADAT_TÁBLA := Excel_fájl_beolvasása("RF_teszt.xlsx")

Dátum_oszlop_átalakítása_valódi_dátummá(ADAT_TÁBLA["Date_of_Journey"])

RENDEZD ADAT_TÁBLÁT növekvő sorrendbe a következő oszlopok szerint:
 ["Airline", "Source", "Destination", "Date_of_Journey"]

INDEXET állítsd vissza 0..N-1-re

2. Célképzés: „következő 30 napban mikor a legolcsóbb?”
Függvény egy csoportra (Airline, Source, Destination)
FÜGGVÉNY AddBestWithin30Days(CSOPORT_TÁBLA):

 RENDEZD CSOPORT_TÁBLÁT "Date_of_Journey" szerint növekvően
 INDEXET állítsd vissza 0..K-1-re

 ÜRES LISTA OFFSETS
 ÜRES LISTA BEST_PRICES

 CIKLUS i = 0-tól K-1-ig:
 AKTUÁLIS_DÁTUM := CSOPORT_TÁBLA["Date_of_Journey"][i]

 MAX_DÁTUM := AKTUÁLIS_DÁTUM + 30 nap

 ABLAK := azok a sorok CSOPORT_TÁBLÁBAN, ahol
 Date_of_Journey ∈ [AKTUÁLIS_DÁTUM, MAX_DÁTUM]

 HA ABLAK üres:
 OFFSETS-hez adj hozzá: NINCS (pl. None)
 BEST_PRICES-hez adj hozzá: NINCS
 KÜLÖNBEN:
 KERESD MEG ABLAK-ban azt a sort, ahol a "Price" a legkisebb
A pszeudokód leírása inkonzisztens, mivel az adatkeresés az időablakra, míg az értékek kiolvasása a teljes csoporttáblára vonatkozik, ami félreérthetővé teszi az algoritmus működését.
 MINIMUM_ÁR_INDEXE := indexe ennek a sornak

 LEGOLCSÓBB_DÁTUM := CSOPORT_TÁBLA["Date_of_Journey"][MINIMUM_ÁR_INDEXE]
 LEGOLCSÓBB_ÁR := CSOPORT_TÁBLA["Price"][MINIMUM_ÁR_INDEXE]

 DELTA_NAPOK := (LEGOLCSÓBB_DÁTUM - AKTUÁLIS_DÁTUM) napokban

 OFFSETS-hez adj hozzá DELTA_NAPOK
 BEST_PRICES-hez adj hozzá LEGOLCSÓBB_ÁR

 CSOPORT_TÁBLA["Best_in_30_days_offset"] := OFFSETS
 CSOPORT_TÁBLA["Best_in_30_days_price"] := BEST_PRICES

 VISSZAAD CSOPORT_TÁBLA
VÉGE FÜGGVÉNY
Függvény alkalmazása minden útvonalcsoportra
ÜRES LISTA CSOPORTOK

CSOPORTOSÍTSD ADAT_TÁBLÁT az alábbi oszlopok szerint:
 ["Airline", "Source", "Destination"]

MINDEN egyes csoport (G) esetén:
 G_TARGETTEL := AddBestWithin30Days(G)
 ADD HOZZÁ CSOPORTOK listához: G_TARGETTEL

DF_MODEL := CSOPORTOK összefűzése egy táblává
Hiányzó célértékek eldobása
A következő 30 napra vonatkozó adatok hiánya miatt törölt sorok időalapú szelekciós torzítást okozhatnak, mivel a modell főként a sűrűbb adatú időszakokra optimalizálódik.
TÖRÖLD AZOKAT A SOROKAT DF_MODEL-ből,
 ahol "Best_in_30_days_offset" NINCS (hiányzó)

ALAKÍTSD "Best_in_30_days_offset" oszlopot EGÉSZ TÍPUSSÁ

3. Dátum bontása (év, hónap, nap)
DF_MODEL["Year"] := év(DF_MODEL["Date_of_Journey"])
DF_MODEL["Month"] := hónap(DF_MODEL["Date_of_Journey"])
DF_MODEL["Day"] := nap(DF_MODEL["Date_of_Journey"])

INDEXÉT DF_MODEL-nek állítsd vissza 0..M-1-re

4. Kategóriák kódolása (one-hot encoding)
DF_ENCODED := OneHotEncoding(
 DF_MODEL,
 oszlopok = ["Airline", "Source", "Destination"]
)

Ez azt jelenti:
minden különböző Airline / Source / Destination értékből
külön 0/1 (bináris) oszlop lesz.

5. Features (X) és Target (y) szétválasztása
CÉLVÁLTOZÓ y := DF_ENCODED["Best_in_30_days_offset"]

BEMENETI_VÁLTOZÓK X := DF_ENCODED MINDEN OSZLOPA, KIVÉVE:
 "Best_in_30_days_offset"
 "Best_in_30_days_price"
 "Date_of_Journey"

6. Tanító és teszt adatok szétválasztása
(X_train, X_test, y_train, y_test) := TrainTestSplit(
 X, y,
 teszt_arany = 0.2,
 véletlen_mag = 42
)

7. Random Forest regresszor tanítása
HOZZ LÉTRE RandomForestRegressor MODELLT az alábbi paraméterekkel:
 n_estimators = 200 (fák száma)
 random_state = 42 (reprodukálhatóság)

ILLeszD A MODELLT:
 RF_MODEL.fit(X_train, y_train)

8. Modell értékelése
y_pred := RF_MODEL.predict(X_test)

MSE := MeanSquaredError(y_test, y_pred)
R2 := R2Score(y_test, y_pred)

KIÍRÁS:
 "=== Modell értékelés ==="
 "MSE: " + MSE
 "R²: " + R2

9. Konkrét jegy elemzése
ticket_index := 0 # ezt a felhasználó szabadon átírhatja

HA ticket_index < 0 VAGY ticket_index ≥ DF_MODEL sorainak száma:
 HIBA: "Hibás ticket_index"

sample_X := X azon sora, amelynek indexe ticket_index
original_row := DF_MODEL azon sora, amelynek indexe ticket_index

original_date := original_row["Date_of_Journey"]
original_price := original_row["Price"]
airline := original_row["Airline"]
source := original_row["Source"]
destination := original_row["Destination"]

pred_offset := RF_MODEL.predict(sample_X) # valós szám
rounded_offset := pred_offset kerekítése legközelebbi egészre

best_date_pred := original_date + rounded_offset nap

KIÍRÁS:
 "=== Konkrét jegy elemzése ==="
 "Jegy indexe: " + ticket_index
 "Légitársaság: " + airline
 "Útvonal: " + source + " → " + destination
 "Eredeti dátum: " + original_date (csak dátum része)
 "Eredeti ár: " + original_price

 "Modell becslése szerint a következő 30 napban:"
 " • Eredeti becslés: pred_offset nap múlva lesz a legolcsóbb"
 " • Kerekítve: ~rounded_offset nap múlva"
 " • Várhatóan ekkor lesz a legolcsóbb dátum: best_date_pred"

HA rounded_offset == 0:
 ÍRD KI: "A modell szerint már MOST (ezen a napon) közel a legolcsóbb a jegy a következő 30 napban."
ELSE HA rounded_offset ≤ 7:
 ÍRD KI: "A modell szerint az elkövetkező egy héten belül lesz a legolcsóbb a jegy."
ELSE HA rounded_offset ≤ 30:
 ÍRD KI: "A modell szerint később, de még 30 napon belül lesz a legolcsóbb a jegy."
KÜLÖNBEN:
 ÍRD KI: "A modell szerint valószínűleg nem a következő 30 napon belül lesz igazán olcsó."

Ha szeretnéd, a következő lépésben át tudom írni ugyanezt még rövidebb, „iskolás” pszeudokódra, vagy éppen folyamatábrához alkalmas pontokba.

PROMT:
Igen kérlek írd át iskolásra

OUTPUT:
Oké, jöjjön a nagyon iskolás, lépésről-lépésre verzió 😊
Nem programozási nyelv, inkább „algoritmus magyarul”.

1. Adatok beolvasása és rendezése
1. Olvasd be az RF_teszt.xlsx nevű Excel fájlt egy táblázatba.
2. A Date_of_Journey oszlopot alakítsd át valódi dátummá.
3. Rendezd a táblázatot az alábbi oszlopok szerint:
· először: Airline (légitársaság),
· aztán: Source (indulási hely),
· aztán: Destination (érkezési hely),
· végül: Date_of_Journey (utazás dátuma).
4. A sorok sorszámát állítsd be szépen egymás után: 0, 1, 2, 3, ...

2. Cél: a következő 30 napban mikor a legolcsóbb?
A megközelítés nem klasszikus ár-előrejelzés, hanem történeti adatokon alapuló optimalizációs szabály visszatanulása.
Ezt csináljuk minden (Airline, Source, Destination) útvonalcsoportra.
Függvény: „Számold ki, mikor lesz a legolcsóbb a következő 30 napban!”
Egy adott csoportnál (tehát adott légitársaság + indulás + érkezés):
1. Rendezd a csoport sorait dátum szerint növekvő sorrendbe.
2. Készíts két üres listát:
· offsetek (hány nap múlva lesz a legolcsóbb),
· legjobb_árak (mennyi az a legkisebb ár).
3. Menj végig a csoport minden során, sorszám szerint (i = 0, 1, 2, ...):
3. Vedd ki az i-edik sor dátumát: ez az aktuális dátum.
3. Számolj egy maximális dátumot: aktuális dátum + 30 nap.
3. Nézd meg, a csoportban melyik sorok esnek a következő időszakba:
3. dátum ≥ aktuális dátum
3. és dátum ≤ max. dátum
Ezt nevezzük „30 napos ablaknak”.
3. Ha a 30 napos ablakban nincs egyetlen sor sem:
4. írd be az offsetek listába: „nincs adat” (None),
4. írd be a legjobb_árak listába: „nincs adat”.
3. Ha van adat:
5. keresd meg azt a sort az ablakban, ahol a Price (ár) a legkisebb,
5. vedd ki ennek a sornak a dátumát → ez a legolcsóbb dátum,
5. vedd ki ennek a sornak az árát → ez a legolcsóbb ár,
5. számold ki a napok különbségét:
4. hány nap telik el az aktuális dátum és a legolcsóbb dátum között,
5. ezt a napkülönbséget tedd be az offsetek listába,
5. a legolcsóbb árat tedd be a legjobb_árak listába.
4. Miután végigmentél az összes soron:
· add hozzá a csoport táblázathoz új oszlopként az offsetek listát
→ Best_in_30_days_offset
· add hozzá új oszlopként a legjobb_árak listát
→ Best_in_30_days_price
5. Add vissza a csoportot az új oszlopokkal.

Ezt tedd meg az összes útvonalcsoportra:
1. Csoportosítsd az eredeti táblázatot az alábbi 3 oszlop szerint:
· Airline,
· Source,
· Destination.
2. Minden egyes csoportnál:
· hívd meg a fenti függvényt,
· a visszakapott táblázatot tedd félre egy listába.
3. Fűzd össze az összes csoport táblázatát egy új nagy táblázattá.
Ezt nevezzük: df_model.
4. Töröld azokat a sorokat a df_model-ből, ahol a
Best_in_30_days_offset nincs kitöltve (nincs adat a 30 napban).
5. A Best_in_30_days_offset oszlop értékeit alakítsd át egész számmá.

3. Dátum szétbontása (év, hónap, nap)
A hónap és a nap ciklikus jellege miatt az egész számként való kódolás torzítást okozhat, ezért sin/cos kódolás vagy ár-történeti jellemzők használata indokoltabb.
1. Készíts három új oszlopot a df_model táblázatban:
· Year = az utazás éve,
· Month = az utazás hónapja,
· Day = az utazás napja.
2. A sorok sorszámát ismét állítsd be 0-tól szépen egymás után.

4. Szöveges adatok kódolása (one-hot encoding)
1. A df_model táblázatból csinálj egy új táblázatot (df_encoded), ahol:
· minden különböző Airline értékből külön 0/1 oszlop készül,
· minden különböző Source értékből külön 0/1 oszlop készül,
· minden különböző Destination értékből külön 0/1 oszlop készül.
2. A többi oszlop marad, ahogy volt (ár, dátum részletek, stb.).

5. Bemenet (X) és célváltozó (y) szétválasztása
1. A célváltozó (amit meg akarunk tanulni):
· y = Best_in_30_days_offset oszlop (hány nap múlva lesz a legolcsóbb).
2. A bemeneti adatok (amit a modell lát):
· X = minden oszlop, kivéve:
· Best_in_30_days_offset (maga a cél),
· Best_in_30_days_price (ez csak infó volt),
· Date_of_Journey (ebből már külön vettük Year/Month/Day-t).

6. Adatak szétosztása tanító és teszt részre
1. Osszad szét X-et és y-t két részre:
· X_train, y_train → a tanításhoz (kb. 80%),
· X_test, y_test → a teszteléshez (kb. 20%).
2. A véletlent úgy állítsd be, hogy reprodukálható legyen (pl. 42-es „mag”).
Időfüggő adatok esetén a véletlenszerű tanító–teszt felosztás look-ahead bias kialakulásához vezethet, mivel a modell olyan jövőbeli információkhoz juthat hozzá, amelyek a valós előrejelzési környezetben nem állnának rendelkezésre. Ennek elkerülése érdekében célszerű az adatokat időrendi sorrendben szétválasztani, hogy a tanulás és az értékelés a valós helyzeteket hűen tükrözze.

7. Random Forest modell betanítása
1. Hozz létre egy Random Forest regressziós modellt:
· 200 darab fával,
· véletlen mag: 42.
2. Tanítsd be a modellt a tanító adatokkal:
· X_train és y_train.

8. Modell kiértékelése
1. Készíts előrejelzést a teszt adatokra:
· y_pred = modell előrejelzése X_test-re.
2. Számold ki:
· MSE (mean squared error) → milyen nagyok a hibák négyzetes átlaga,
· R² (determinációs együttható) → mennyire magyarázza jól az adatot.
3. Írd ki az értékeket a képernyőre.

9. Egy konkrét jegy elemzése
1. Válaszd ki, melyik sort nézed:
· ticket_index = pl. 0 (első sor), 10 (11. sor), stb.
2. Ha ticket_index kívül esik a táblázat sorainak számán:
· jelezd, hogy hiba (rossz index).
3. Vedd ki:
· a bemenetet, amit a modell lát: sample_X = X adott sora,
· az eredeti sort: original_row = df_model adott sora.
4. Ebből olvasd ki:
· original_date = eredeti utazási dátum,
· original_price = eredeti ár,
· airline = légitársaság,
· source = indulási város,
· destination = érkezési város.
5. Kérdezd meg a modellt:
· pred_offset = a modell szerint hány nap múlva lesz a legolcsóbb (lehet tört szám),
· rounded_offset = pred_offset kerekítve egészre.
6. Számold ki:
· best_date_pred = original_date + rounded_offset nap.
7. Írd ki szépen szövegesen:
· melyik jegyet nézzük (index, légitársaság, útvonal),
· eredeti dátum és ár,
· modell becslése (pontosan és kerekítve),
· melyik dátumra tippeli a legolcsóbb napot.
8. Adj egyszerű szöveges értelmezést:
· Ha rounded_offset == 0 → a modell szerint már most közel a legolcsóbb.
· Ha rounded_offset ≤ 7 → a következő egy héten belül lesz a legolcsóbb.
· Ha rounded_offset ≤ 30 → később, de még 30 napon belül lesz a legolcsóbb.
· Ha rounded_offset > 30 → valószínűleg nem a következő 30 napban lesz igazán olcsó.

