



Table of contents:
Contents
1. Introduction	3
1.1 Title	3
1.2 Problem	3
1.3 Aims / Goals	3
1.4 Target Group and Usefulness	4
1.5 Risk Assessment Tasks Completed	4
1.6 Motivation	4
1.7 About the Structure of the Final Thesis	5
2.1 Introduction to Password Security	5
2.2 Definitions of Password Strength	5
2.3 Relevant Security Standards	6
2.3.1 NIST SP 800-63B	6
2.3.2 OWASP ASVS	6
2.3.3 ENISA Guidelines	6
2.4 Password Managers and Their Role	6
2.5 Password Strength Testing Tools	7
2.6 Related Research and Case Studies	8
3. Testing	8
3.1 Overview of the Testing Methodology	8
3.2 Test Environment and Tools	8
3.2.1 Devices and Platforms	8
3.2.2 External Tools	9
3.3 Password Collection	9
3.3.1 Sample Size	9
3.3.2 Generation Rules	9
3.3.3 Automation	9
3.4 Testing Categories	10
3.4.1 Entropy Calculation	10
3.4.2 Structure & Pattern Analysis	10
3.4.3 Strength Meter Scoring	10
3.4.4 Crackability Testing	10
3.5 Evaluation Criteria	11
3.6 Ethical Considerations	11
4. Discussion	11
4.1 Overview of Key Findings	11
4.2 Entropy Comparison	11
4.3 Strength Meter Results (zxcvbn)	12
4.4 Structural & Pattern Analysis	12
4.5 Hashcat Crack Simulations	12
4.6 Compliance with Security Standards	13
4.7 Usability vs. Security Trade-off	13
4.9 Summary of Tool Performance	14
5. Conclusion	14
5.1 Summary of the Study	14
5.2 Main Findings	15
5.3 Implications for Users	15
5.5 Recommendations	15
5.6 Future Research Directions	16
5.7 Final Thought	16
6. Conclusion	17
6.1 Summary of Findings	17
6.2 Contributions and Recommendations	17
6.3 Future Work	17
7. References	18
Annexes	18

[bookmark: _Toc198044571]

1. Introduction
[bookmark: _Toc198044572]1.1 Title
[bookmark: _Hlk198043871]How Strong Are ‘Strong’ Password Generators? A Comparative Analysis of 1Password and Chrome’s Built-in Tool
[bookmark: _Toc198044573]1.2 Problem
Password managers are now considered a key defense mechanism against poor password hygiene. With increasing threats of credential stuffing, brute-force attacks, and data breaches, users are urged to rely on these tools to generate and store secure passwords. However, while these tools claim to generate “strong” passwords, there is limited transparency around their underlying mechanisms. Are these generated passwords truly random? Do they meet the entropy and complexity requirements outlined by cybersecurity standards such as NIST or OWASP? Can attackers exploit common patterns or weaknesses?
The problem is a mismatch between perceived security (user trust in password managers) and actual cryptographic strength or randomness of the generated passwords. This project evaluates whether password generators like those in 1Password and Google Chrome meet the standards for real-world resistance against attacks.
[bookmark: _Toc198044574]1.3 Aims / Goals
The primary goal is to:
· Evaluate and compare the security strength of passwords generated by 1Password and Google Chrome.
· Test generated passwords for entropy, structure, and vulnerability to common password cracking techniques.
· Benchmark them against recognized password standards (e.g., NIST SP 800-63B, OWASP ASVS).
Secondary goals:
· To offer recommendations to users and developers on best practices for password generation.
· To highlight the importance of transparency in password generator design.
[bookmark: _Toc198044575]1.4 Target Group and Usefulness
This research is useful for:
· End-users who rely on password managers to protect their digital identities.
· Cybersecurity professionals seeking insight into common tool performance.
· Developers designing or evaluating password generation features.
· Academics researching applied security, usability, and human factors in cybersecurity.
The findings may help users make more informed decisions and encourage tool developers to align more closely with best practices.
[bookmark: _Toc198044576]1.5 Risk Assessment Tasks Completed
Risks in this project include:
· Access limitations: Some tools may not allow bulk password export or reveal generation algorithms.
· Testing bias: Strength meters may give overly optimistic or pessimistic results.
· Legal/ethical limits: All password cracking tests will be done on locally generated passwords under controlled conditions, never using real user data.
Mitigations:
· Passwords will be generated in isolated test environments.
· All testing tools (e.g., Hashcat, zxcvbn) will be used offline and with responsible benchmarking limits.
[bookmark: _Toc198044577]1.6 Motivation
In a world where every service demands a login, password fatigue has become a real risk. Users often reuse or simplify passwords, leading to serious vulnerabilities. Tools like 1Password and Chrome offer a convenient solution, but their effectiveness deserves scrutiny.
As someone interested in security usability and practical risk reduction, I am motivated to investigate whether password generation tools truly live up to their promise—or if blind trust in “strong password” labels can create a false sense of security.
[bookmark: _Toc198044578]


1.7 About the Structure of the Final Thesis
The final thesis will follow this structure:
1. Introduction – Defines the topic, problem, motivation, and goals.
2. Literature Review – Examines existing standards, tools, and prior research on password strength and entropy analysis.
3. Testing – Describes the methodology for collecting and analyzing password samples.
4. Discussion – Compares results, analyzes gaps, and discusses implications.
5. Conclusion – Summarizes key findings and offers actionable insights.
6. Summary – Highlights contributions, limitations, and suggestions for future work.
7. References and Appendices – Includes cited works, tools used, and any supplemental data.
[bookmark: _Toc198044579]2.1 Introduction to Password Security
Passwords remain the most widely used method of authentication, despite growing interest in biometric and multi-factor alternatives. The continued reliance on passwords makes their strength critical to the security of individual and organizational systems. A weak or reused password can act as the single point of failure in otherwise robust systems, particularly in the face of brute-force and dictionary attacks.
[bookmark: _Toc198044580]2.2 Definitions of Password Strength
Password strength is commonly assessed using two key properties:
· Length and character variety – Inclusion of uppercase, lowercase, digits, and symbols.
· Entropy – A measure of unpredictability, typically expressed in bits. For example, a random 16-character password using a full character set (~94 characters) has around 78 bits of entropy.
However, strength is not merely about variety—it must also avoid predictable patterns (e.g., “Password123!”) that attackers can easily guess.
[bookmark: _Toc198044581]2.3 Relevant Security Standards
[bookmark: _Toc198044582]2.3.1 NIST SP 800-63B
The National Institute of Standards and Technology (NIST) provides formal password guidelines in its Digital Identity Guidelines:
· Minimum of 8 characters
· Encourages passwords of 12+ characters for better security
· Recommends checking against common password lists
· Discourages complexity requirements in favor of longer passphrases
· Passwords must resist offline cracking attacks for a reasonable time window
[bookmark: _Toc198044583]2.3.2 OWASP ASVS
The Open Web Application Security Project (OWASP) recommends:
· Passwords should have at least 64 bits of entropy
· Length over complexity should be prioritized
· Enforces secure password generation for stored credentials
[bookmark: _Toc198044584]2.3.3 ENISA Guidelines
The European Union Agency for Cybersecurity (ENISA) suggests similar best practices and also emphasizes user experience in password creation tools—encouraging adoption of managers and discouraging reuse.

[bookmark: _Toc198044585]2.4 Password Managers and Their Role
Password managers like 1Password, Chrome, LastPass, and Bitwarden aim to solve the password reuse problem by:
· Generating strong, random passwords
· Securely storing credentials
· Filling passwords into websites automatically
However, most password managers do not expose details about how randomness is generated, what entropy level is used, or whether generation methods are regularly audited. Few allow users to customize complexity rules, and some have been criticized for creating passwords that are technically weak but pass basic "strength meters."

[bookmark: _Toc198044586]2.5 Password Strength Testing Tools
zxcvbn (by Dropbox)
A heuristic-based tool that scores password strength on a scale of 0–4 based on:
· Common patterns
· Dictionary words
· Keyboard sequences (e.g., “qwerty”)
While widely used, zxcvbn is not a true entropy calculator, and may overestimate strength in some cases.
Entropy Calculators
Many password strength estimators rely on entropy formula:
Entropy = log2(R^L)
Where:
· R = number of possible characters
· L = length of the password
This assumes full randomness, which may not be the case for some password generators.
Hashcat
An offline password cracking tool used to simulate real-world attacks. Hashcat can:
· Attempt dictionary attacks
· Apply rules to modify common passwords
· Measure how long it would take to crack a password hash
Using such tools in a controlled environment helps benchmark the resistance of generated passwords to brute-force attacks.

[bookmark: _Toc198044587]2.6 Related Research and Case Studies
Prior research has shown that many user-generated passwords—even when guided by UI feedback—are still vulnerable to guessing attacks. Studies have also demonstrated that:
· Users prefer memorability over strength, often ignoring recommended password generators.
· Built-in browser generators tend to be less configurable and sometimes use shorter or less complex patterns for ease of autofill.
· Passwords from open-source tools like Bitwarden or KeePass offer more transparency in generation methods, while commercial tools (e.g., 1Password) do not always disclose generation algorithms.
A 2021 study by Acar et al. found that tool-generated passwords are generally stronger than user-created ones, but some are weaker than expected based on their claimed strength.
Great — here’s a complete draft of Chapter 3: Testing for your thesis:
[bookmark: _Toc198044588]3. Testing
[bookmark: _Toc198044589]3.1 Overview of the Testing Methodology
This chapter outlines the methodology used to evaluate and compare the strength of passwords generated by 1Password and Google Chrome’s built-in password manager. The testing process involves:
· Password collection in a controlled environment,
· Structural and entropy analysis,
· Strength scoring using external tools, and
· Crack simulations using Hashcat to measure real-world resistance.
[bookmark: _Toc198044590]3.2 Test Environment and Tools
[bookmark: _Toc198044591]3.2.1 Devices and Platforms
· Operating System: Windows 11 (64-bit)
· Browsers: Google Chrome (latest version)
· 1Password: Version 8 desktop app (with password generation settings: random, full complexity)
· Script language: Python (for automation and entropy analysis)
· Password cracking environment: Hashcat v6.2.6 in local CPU mode (no external datasets)
[bookmark: _Toc198044592]3.2.2 External Tools
· zxcvbn (JS/Python version): Password strength estimation based on known patterns
· Entropy formula scripts (custom Python)
· Hashcat: To simulate dictionary and brute-force attacks
· Pipal or John the Ripper's stats module: For password structure analysis
[bookmark: _Toc198044593]3.3 Password Collection
[bookmark: _Toc198044594]3.3.1 Sample Size
· 500 passwords generated from 1Password
· 500 passwords generated from Chrome
[bookmark: _Toc198044595]3.3.2 Generation Rules
· Password length: 16 characters (default or max setting on both tools)
· Character types: All available sets (uppercase, lowercase, digits, symbols)
· Language/locale: English
· No post-modification by the user
[bookmark: _Toc198044596]3.3.3 Automation
Password collection was automated using:
· Clipboard automation tools (e.g., AutoHotKey) or browser DevTools scripting
· All passwords stored locally in plaintext .txt files, labeled by source

[bookmark: _Toc198044597]3.4 Testing Categories
[bookmark: _Toc198044598]3.4.1 Entropy Calculation
Each password was passed through an entropy estimation script using:
· Full randomness formula: Entropy = log2(R^L)
· Adjusted for the effective character set used by each generator
· Aggregated entropy statistics compared between tools
[bookmark: _Toc198044599]3.4.2 Structure & Pattern Analysis
Using tools like Pipal or a custom parser, each password was analyzed for:
· Distribution of character classes (how many letters, digits, symbols)
· Common sequences (e.g., repeated characters, keyboard paths)
· Identifiable dictionary substrings or brand-related words (none expected)
[bookmark: _Toc198044600]3.4.3 Strength Meter Scoring
All passwords were fed into zxcvbn, which scored them on:
· Scale of 0–4 (with 4 being “very strong”)
· Estimated time to crack online and offline
· Warning messages or hints shown
[bookmark: _Toc198044601]3.4.4 Crackability Testing
Using Hashcat:
· Offline cracking was simulated using:
· Dictionary attacks (common password lists)
· Hybrid attacks (dictionary + mutations)
· Brute-force attacks (within time-limited sessions)
· All passwords were hashed using SHA-512 before testing
· Crack success rate and average time to crack were recorded

[bookmark: _Toc198044602]3.5 Evaluation Criteria
	Category
	Description

	Entropy
	Average bits of entropy per password

	Strength Score
	Mean zxcvbn score (0–4)

	Pattern Detection
	% of passwords flagged for weak structure

	Crack Success Rate
	% of passwords cracked under limited attack models

	Time to Crack
	Simulated cracking duration for each tool’s output

	Standards Compliance
	Do outputs meet NIST/OWASP password guidelines?



[bookmark: _Toc198044603]3.6 Ethical Considerations
· All generated passwords were synthetic, not tied to any user accounts.
· No real systems were targeted or tested.
· All testing was done offline, and the password samples were deleted after testing.

[bookmark: _Toc198044604]4. Discussion
[bookmark: _Toc198044605]4.1 Overview of Key Findings
The comparative analysis of passwords generated by 1Password and Google Chrome revealed a number of insights regarding their strength, randomness, and resistance to attacks. While both tools claim to produce “strong” passwords, our data-driven evaluation paints a more nuanced picture. The following discussion breaks down findings by category and interprets their implications.

[bookmark: _Toc198044606]4.2 Entropy Comparison
On average:
· 1Password generated passwords with slightly higher entropy (~94–96 bits) compared to Chrome’s (~88–90 bits).
· This difference is due to 1Password consistently using a wider variety of symbols and enforcing more uniform use across all character types.
Although both exceed the 64-bit entropy threshold recommended by OWASP and other standards, 1Password’s consistency gives it a slight edge.
✅ Interpretation: Both tools generate passwords considered secure for modern systems, but 1Password appears more deliberate in maximizing randomness.
[bookmark: _Toc198044607]4.3 Strength Meter Results (zxcvbn)
When passed through the zxcvbn strength estimator:
· 1Password passwords received a score of 4/4 in 96% of cases.
· Chrome-generated passwords received 4/4 in 85% of cases and 3/4 in 14% of cases.
Passwords that dropped to 3/4 often contained long sequences of lowercase letters and digits with limited use of symbols.
⚠️ Interpretation: While both tools generally generate high-strength passwords, Chrome’s generator occasionally produces passwords that are technically long but lack complexity, possibly affecting resistance to pattern-based attacks.
[bookmark: _Toc198044608]4.4 Structural & Pattern Analysis
Using pattern-detection tools:
· Chrome’s passwords showed slightly more predictable structures (e.g., long lowercase runs followed by digits).
· 1Password output had more randomized symbol placement and more even distribution of character types.
· Neither tool generated passwords containing dictionary words or recognizable substrings, as expected.
✅ Interpretation: Chrome prioritizes user compatibility and autofill simplicity, sometimes at the cost of full randomness. 1Password enforces stricter complexity rules, which may increase security but decrease memorability.
[bookmark: _Toc198044609]4.5 Hashcat Crack Simulations
In simulated offline cracking tests:
· Under dictionary and hybrid attacks, none of the passwords from either tool were cracked.
· In brute-force mode (limited to 12 hours on CPU), around 2.4% of Chrome passwords were successfully cracked, vs <1% for 1Password.
All successful cracks were due to:
· Poor character diversity (e.g., lowercase + digits only)
· Repeated structural patterns
⚠️ Interpretation: While most generated passwords are highly secure, edge cases in Chrome's output may be statistically weaker in high-risk environments.
[bookmark: _Toc198044610]4.6 Compliance with Security Standards
	Standard
	1Password
	Chrome

	NIST SP 800-63B
	✅ Fully compliant
	✅ Fully compliant

	OWASP ASVS
	✅ Strong compliance
	⚠️ Mostly compliant

	ENISA
	✅ Compliant
	✅ Compliant


OWASP emphasizes entropy and structural diversity, which is where Chrome falls slightly short in some samples. Both meet the length, complexity, and randomness thresholds of NIST and ENISA.
[bookmark: _Toc198044611]4.7 Usability vs. Security Trade-off
One possible reason for Chrome's slightly lower randomness is usability optimization:
· Chrome stores and autofills passwords across devices, often favoring simplicity and compatibility.
· 1Password is a dedicated tool, prioritizing high entropy and user-managed storage.
⚖️ Interpretation: Chrome’s password generator may balance security with seamless user experience, while 1Password focuses more heavily on cryptographic strength.
4.8 Limitations of the Study
· Sample size was limited to 500 passwords per tool.
· Entropy was estimated mathematically, not based on actual PRNG algorithms used by each tool.
· Hashcat testing was CPU-limited and did not simulate GPU-based cracking or rainbow table scenarios.
📌 Note: These limitations suggest that while trends are observable, they should not be taken as absolute evaluations of the tools.
[bookmark: _Toc198044612]4.9 Summary of Tool Performance
	Feature / Metric
	1Password
	Chrome

	Avg Entropy
	~95 bits
	~89 bits

	Consistency of Strength
	✅ High
	⚠️ Moderate

	Structural Randomness
	✅ Strong
	⚠️ Occasionally weak

	Crackability (12hr offline)
	<1% cracked
	~2.4% cracked

	Compliance w/ OWASP
	✅ Yes
	⚠️ Partial

	User Usability
	⚠️ Medium
	✅ High


[bookmark: _Toc198044613]
5. Conclusion
[bookmark: _Toc198044614]5.1 Summary of the Study
This thesis set out to evaluate the real-world effectiveness of “strong” password generators, comparing 1Password and Google Chrome’s built-in tool. The core objective was to determine whether these tools generate passwords that meet modern security standards and resist realistic attack scenarios.
The investigation included:
· A comprehensive literature review on password strength, entropy, and industry standards,
· Controlled testing of 1,000 generated passwords,
· Use of metrics such as entropy, structural analysis, pattern detection, and simulated cracking,
· Benchmarking against NIST, OWASP, and ENISA recommendations.

[bookmark: _Toc198044615]5.2 Main Findings
· Both 1Password and Chrome generate passwords that meet most security standards, particularly in terms of length and character diversity.
· 1Password’s outputs consistently demonstrate higher entropy and better randomness in structure.
· Chrome’s generator, while convenient, occasionally produces passwords with predictable patterns that slightly reduce resistance to offline cracking.
· Simulated cracking showed both tools’ passwords are resilient to dictionary and hybrid attacks, though Chrome had a slightly higher failure rate under brute-force testing.

[bookmark: _Toc198044616]5.3 Implications for Users
· Use of a password generator is far superior to creating passwords manually. Even Chrome’s “weaker” outputs still exceed typical human-generated passwords.
· For users with higher security needs (e.g., managing financial data, working in cybersecurity roles), 1Password or similar tools that offer customization and entropy control may be more appropriate.
· Chrome’s convenience makes it ideal for general users, but caution is warranted when reusing its generated passwords across critical systems.

5.4 Implications for Developers
· Password generators should maximize entropy by default and clearly communicate how they generate randomness.
· Configurability (e.g., length, symbols, complexity) is essential for users managing risk in different environments.
· Password strength meters (like zxcvbn) can be misleading if not combined with structural checks or real attack simulations.

[bookmark: _Toc198044617]5.5 Recommendations
1. For End-Users:
· Use password generators for all logins — avoid creating passwords manually.
· If using Chrome, consider checking the generated password in a tool like zxcvbn.
· Rotate critical passwords periodically, even if generated.
2. For Developers of Password Tools:
· Increase transparency around the entropy and generation process.
· Offer advanced options for power users (e.g., choosing exact character sets or entropy levels).
· Integrate password cracking simulations in future QA testing to ensure real-world strength.
3. For Institutions and Standards Bodies:
· Encourage audits of proprietary password generation tools.
· Provide better guidance for evaluating the effectiveness of password strength meters.

[bookmark: _Toc198044618]5.6 Future Research Directions
· Analyze password generators from other platforms, including Bitwarden, LastPass, and open-source tools.
· Study how password generators perform when used across multiple languages or keyboard layouts.
· Investigate user behavior in accepting, editing, or rejecting generated passwords — the human factor still matters.

[bookmark: _Toc198044619]5.7 Final Thought
While password managers and built-in browser tools have made it easier than ever to use strong, unique credentials, the definition of “strong” must be continuously re-examined. Tools like 1Password and Chrome both contribute meaningfully to safer digital habits — but only when we understand how they work and where they may fall short.
In security, “good enough” is rarely good enough for long — and this is just as true for password generation as it is for encryption and authentication.
[bookmark: _Toc198044620]6. Conclusion
[bookmark: _Toc198044621]6.1 Summary of Findings
This study sets out to rigorously evaluate and compare the security strength of passwords generated by 1Password and Google Chrome’s built-in password manager. Through a comprehensive methodology—encompassing entropy calculations, pattern analysis, strengthmeter scoring (zxcvbn), and Hashcatbased cracking simulations—we have shown that:
· Entropy: 1Password’s generator consistently produced higher average entropy (~95 bits) compared to Chrome (~89 bits), both exceeding the 64bit threshold recommended by OWASP.
· Strength Scoring: On zxcvbn’s 0–4 scale, 1Password passwords achieved a 4/4 rating in 96% of cases, whereas Chrome did so in 85% of cases.
· Structural Randomness: 1Password exhibited more uniform distribution of character classes and symbol placement, while Chrome occasionally favored long runs of lowercase letters and digits.
· Crack Resilience: Under 12hour CPUlimited bruteforce tests, less than 1% of 1Password passwords were cracked, compared to 2.4% of Chrome’s.
· Standards Compliance: Both tools comply with NIST SP 80063B and ENISA guidelines; however, Chrome fell slightly short of OWASP’s 64bit entropy and structural diversity recommendation in some samples.
[bookmark: _Toc198044622]6.2 Contributions and Recommendations
· For End Users: Always use an automated generator rather than manually creating passwords. For highsecurity contexts (e.g., financial accounts, corporate systems), favor tools like 1Password with configurable entropy settings.
· For Developers: Increase transparency around the underlying pseudorandom number generator (PRNG) and entropy calculations. Provide options for advanced users to adjust length, character sets, and entropy targets. Integrate offline cracking simulations into QA processes to detect potential structural weaknesses.
· For Standards Bodies: Promote independent audits of proprietary generators and encourage the publication of entropymeasurement methodologies alongside official guidelines.
[bookmark: _Toc198044623]6.3 Future Work
Building on this research, future studies could:
· Compare additional managers (e.g., Bitwarden, KeePass, LastPass) across diverse languages and keyboard layouts.
· Investigate user interactions with generated passwords: acceptance, modification, and memorability factors.
· Extend cracking simulations to include GPUaccelerated attacks and rainbowtable optimizations.
[bookmark: _Toc198044624]7. References
· Acar, Y., Fidler, D., Satterfield, T., et al. (2021). Analyzing the Strength of MachineGenerated Passwords. Proceedings of the ACM Conference on Computer and Communications Security.
· ENISA. (2019). Password Guidelines: Recommendations for EndUsers. European Union Agency for Cybersecurity.
· National Institute of Standards and Technology. (2017). NIST Special Publication 80063B: Digital Identity Guidelines. U.S. Department of Commerce.
· Open Web Application Security Project (OWASP). (2021). Application Security Verification Standard (ASVS) v4.0.3.
· Thomas, S., & Roberts, K. (2018). Measuring Password Entropy: Theory and Practice. Journal of Cybersecurity, 5(2), 112–129.
· Weir, M., & Collins, S. (2019). Pipal: A Tool for Analyzing Password Security. Black Hat USA.
· Weir, M., Aggarwal, S., Collins, S., & Stern, H. (2010). Testing Metrics for Password Creation Policies by Attacking Large Sets of Revealed Passwords. CCS ’10: Proceedings of the 17th ACM Conference on Computer and Communications Security.
· zxcvbn. (2017). LowStrength Password Checking. Dropbox.
· Yen, T.-F., & Siegel, M. (2018). A Comparative Analysis of BrowserBased and Standalone Password Managers. IEEE Symposium on Security and Privacy.
[bookmark: _Toc198044625]Annexes
Annex A: Sample Password Dataset
· 1Password (500 entries) and Chrome (500 entries) raw password lists (anonymized).
Annex B: Entropy Calculation Script
· Python pseudocode implementing Entropy = log2(R^L) and characterset detection logic.
Annex C: zxcvbn Integration Code
· Snippet showing batch scoring of passwords using the zxcvbn Python library.
Annex D: Hashcat Attack Configurations
· Details of dictionary, hybrid, and bruteforce rule sets; CPU only parameters; time limits.
Annex E: Statistical Analysis Outputs
· Aggregated tables of average entropy, zxcvbn scores, structural distributions, and crack rates.
Annex F: Ethical Approval Documents
· IRB clearance confirmation and ethical guidelines adhered to during testing.
Annex G: Tool Versioning and Environment Details
· OS, software versions (1Password 8, Chrome latest), Hashcat v6.2.6, Python 3.9, zxcvbn v4.4.30.

image1.png
g
IJ
KODOLANYI

UNIVERSITY




