„Valószínűség” változatai közötti eltérés

A Miau Wiki wikiből
(Történeti modul)
(Történeti modul)
8. sor: 8. sor:
 
1933: A valószínűségelmélet kiteljesedése matematikailag egzakt, axiomatikus felépítésű diszciplínává Kolmogorov munkásságának eredménye. A valószínűség fogalmát, a történeti fejlődést követve előbb a szerencsejátékokból eredő módszerrel a klasszikus (a), majd a matematikailag egzakt módon (axiómákkal) az általános (Kolmogorov-féle) valószínűségi mezőre (b) definiáljuk.[http://www.mindentudas.hu/gyorfi/20041206gyorfi1.html?pIdx=5]
 
1933: A valószínűségelmélet kiteljesedése matematikailag egzakt, axiomatikus felépítésű diszciplínává Kolmogorov munkásságának eredménye. A valószínűség fogalmát, a történeti fejlődést követve előbb a szerencsejátékokból eredő módszerrel a klasszikus (a), majd a matematikailag egzakt módon (axiómákkal) az általános (Kolmogorov-féle) valószínűségi mezőre (b) definiáljuk.[http://www.mindentudas.hu/gyorfi/20041206gyorfi1.html?pIdx=5]
  
1944:Haavelmo 1944-ben megjelent művétől számítják a modern ökonometria megszületését, amely többváltozós szimultán egyenletrendszerekkel a tapasztalati adatokból következtet az elméleti valószínűségi változók tulajdonságaira. A valószínűségi elv alkalmazása megteremtette a hidat a tényadatok és az elmélet között, miután magyarázatot tudott adni arra, miért térnek el a megfigyelt adatok az elméleti értékektől.[http://www.bke.hu/econhist/tantar/doc/HuttlAmerestort.doc]   
+
1944:Havelmo 1944-ben megjelent művétől számítják a modern ökonometria megszületését, amely többváltozós szimultán egyenletrendszerekkel a tapasztalati adatokból következtet az elméleti valószínűségi változók tulajdonságaira. A valószínűségi elv alkalmazása megteremtette a hidat a tényadatok és az elmélet között, miután magyarázatot tudott adni arra, miért térnek el a megfigyelt adatok az elméleti értékektől.[http://www.bke.hu/econhist/tantar/doc/HuttlAmerestort.doc]   
  
 
1956: Egyúttal annak pontos, kvantitatív jellemzése, mit tudunk, és mit nem tudunk: Fisher szerint tudatlanságunk precíz specifikációja.
 
1956: Egyúttal annak pontos, kvantitatív jellemzése, mit tudunk, és mit nem tudunk: Fisher szerint tudatlanságunk precíz specifikációja.

A lap 2005. december 21., 15:17-kori változata

Angol megnevezés: Probability

Történeti modul

17. század: A valószínűség elméletének tudományos megalapozása két matematikus, Pascal és Fermat nevéhez fűződik.[1]

18.század:A valószínűség-számítás elmélete a matematikában már a 18. század elejére visszanyúlik, Bernoulli munkásságáig. Bár az elméletet eredetileg nem a mérési hibák vizsgálatára dolgozták ki, de maguk a tételek régóta ismertek voltak.[2]

1933: A valószínűségelmélet kiteljesedése matematikailag egzakt, axiomatikus felépítésű diszciplínává Kolmogorov munkásságának eredménye. A valószínűség fogalmát, a történeti fejlődést követve előbb a szerencsejátékokból eredő módszerrel a klasszikus (a), majd a matematikailag egzakt módon (axiómákkal) az általános (Kolmogorov-féle) valószínűségi mezőre (b) definiáljuk.[3]

1944:Havelmo 1944-ben megjelent művétől számítják a modern ökonometria megszületését, amely többváltozós szimultán egyenletrendszerekkel a tapasztalati adatokból következtet az elméleti valószínűségi változók tulajdonságaira. A valószínűségi elv alkalmazása megteremtette a hidat a tényadatok és az elmélet között, miután magyarázatot tudott adni arra, miért térnek el a megfigyelt adatok az elméleti értékektől.[4]

1956: Egyúttal annak pontos, kvantitatív jellemzése, mit tudunk, és mit nem tudunk: Fisher szerint tudatlanságunk precíz specifikációja.

Napjainkban:Nem elhanyagolható az sem, hogy a számítógépes adatfeldolgozás helyesen megalkotott algoritmusai képesek olyan orientáló, kiegészítő eredményeket is produkálni, mint pl. a talált összefüggés ismert adatokon számítható beválási jellemzői (valószínűség), vagy pl. a vizsgálthoz hasonló esetek leválogatása és megmutatása.[5]

Ontológiai modul

  • "ez egy" kapcsolattípus:
    • matematika(leginkább használt alkalmazási terület)
    • informatika(a matematikából következő alkalmazási terület)
  • "van neki, része szócikknek":
  • "a szócikk része valaminek":

Ellentmondások és vitatott kijelentések modulja

A kísérlet több azonos feltételek között történő független, ismételt végrehajtásból áll, minden egyes megismétlése egy-egy kimenetelt valósít meg. Ha azt kérdezzük, hogy mi a valószínűsége egy eseménynek, azt várjuk, hogy a válasz egy szám, amely a kérdéses eseményhez van rendelve. A valószínűség tehát egy függvény, amelynek értelmezési tartományát események, értékkészletét számok alkotják.

Definíciós modul

Valaminek valószínű, lehetséges, bekövetkezhető volta, jelleg; megközelítő, fél bizonyság, lehetőség, esély. Esemény bekövetkezésének, állítás helyességének lehetőségét kifejező mérték.Az a mérték, amellyel -a szükségszerű és a véletlen tényezők egybevetése alapján- kifejezzük, hogy valamely esemény, jelenség, tény, állításbekövetkezésének, illetve helyességének milyen objektív lehetősége van.

Tesztkérdések modul

Milyen mezőkre definiáljuk a valószínűséget?(A valószínűség fogalmát, a történeti fejlődést követve előbb a szerencsejátékokból eredő módszerrel a klasszikus (a), majd a matematikailag egzakt módon (axiómákkal) az általános (Kolmogorov-féle) valószínűségi mezőre (b) definiáljuk.)

Ajánlott irodalmak modulja

  • Juhász József, Szőke István, O. Nagy Gábor, Kovalovszky Miklós:Magyar Értelmező Kéziszótár[6]
  • Magyar Tudományos Akadémia Nyelvtudományi Intézet:A magyar nyelv értelmező kéziszótára[7]