„Valószínűség” változatai közötti eltérés

A Miau Wiki wikiből
(Ellentmondások és vitatott kijelentések modulja)
(Történeti modul)
5. sor: 5. sor:
  
 
18.század:A valószínűség-számítás elmélete a matematikában már a 18. század elejére visszanyúlik, Bernoulli munkásságáig. Bár az elméletet eredetileg nem a mérési hibák vizsgálatára dolgozták ki, de maguk a tételek régóta ismertek voltak.[http://www.bke.hu/econhist/tantar/doc/HuttlAmerestort.doc]  
 
18.század:A valószínűség-számítás elmélete a matematikában már a 18. század elejére visszanyúlik, Bernoulli munkásságáig. Bár az elméletet eredetileg nem a mérési hibák vizsgálatára dolgozták ki, de maguk a tételek régóta ismertek voltak.[http://www.bke.hu/econhist/tantar/doc/HuttlAmerestort.doc]  
 +
 +
1654: Pascal és Fermat egymástól függetlenül megoldotta a problémát, s ez akkoriban olyan komoly felfedezésnek számított, hogy sokan ma is ettől az időponttól számítják a valószínűségszámítás megszületését.[http://matek.fazekas.hu/portal/tanitasianyagok/Orosz_Gyula/Val/v2.html]
  
 
1933: A valószínűségelmélet kiteljesedése matematikailag egzakt, axiomatikus felépítésű diszciplínává Kolmogorov munkásságának eredménye. A valószínűség fogalmát, a történeti fejlődést követve előbb a szerencsejátékokból eredő módszerrel a klasszikus (a), majd a matematikailag egzakt módon (axiómákkal) az általános (Kolmogorov-féle) valószínűségi mezőre (b) definiáljuk.[http://www.mindentudas.hu/gyorfi/20041206gyorfi1.html?pIdx=5]
 
1933: A valószínűségelmélet kiteljesedése matematikailag egzakt, axiomatikus felépítésű diszciplínává Kolmogorov munkásságának eredménye. A valószínűség fogalmát, a történeti fejlődést követve előbb a szerencsejátékokból eredő módszerrel a klasszikus (a), majd a matematikailag egzakt módon (axiómákkal) az általános (Kolmogorov-féle) valószínűségi mezőre (b) definiáljuk.[http://www.mindentudas.hu/gyorfi/20041206gyorfi1.html?pIdx=5]

A lap 2005. december 21., 15:36-kori változata

Angol megnevezés: Probability

Történeti modul

17. század: A valószínűség elméletének tudományos megalapozása két matematikus, Pascal és Fermat nevéhez fűződik.[1]

18.század:A valószínűség-számítás elmélete a matematikában már a 18. század elejére visszanyúlik, Bernoulli munkásságáig. Bár az elméletet eredetileg nem a mérési hibák vizsgálatára dolgozták ki, de maguk a tételek régóta ismertek voltak.[2]

1654: Pascal és Fermat egymástól függetlenül megoldotta a problémát, s ez akkoriban olyan komoly felfedezésnek számított, hogy sokan ma is ettől az időponttól számítják a valószínűségszámítás megszületését.[3]

1933: A valószínűségelmélet kiteljesedése matematikailag egzakt, axiomatikus felépítésű diszciplínává Kolmogorov munkásságának eredménye. A valószínűség fogalmát, a történeti fejlődést követve előbb a szerencsejátékokból eredő módszerrel a klasszikus (a), majd a matematikailag egzakt módon (axiómákkal) az általános (Kolmogorov-féle) valószínűségi mezőre (b) definiáljuk.[4]

1944:Havelmo 1944-ben megjelent művétől számítják a modern ökonometria megszületését, amely többváltozós szimultán egyenletrendszerekkel a tapasztalati adatokból következtet az elméleti valószínűségi változók tulajdonságaira. A valószínűségi elv alkalmazása megteremtette a hidat a tényadatok és az elmélet között, miután magyarázatot tudott adni arra, miért térnek el a megfigyelt adatok az elméleti értékektől.[5]

1956: Egyúttal annak pontos, kvantitatív jellemzése, mit tudunk, és mit nem tudunk: Fisher szerint tudatlanságunk precíz specifikációja.

Napjainkban: Nem elhanyagolható az sem, hogy a számítógépes adatfeldolgozás helyesen megalkotott algoritmusai képesek olyan orientáló, kiegészítő eredményeket is produkálni, mint pl. a talált összefüggés ismert adatokon számítható beválási jellemzői (valószínűség), vagy pl. a vizsgálthoz hasonló esetek leválogatása és megmutatása.[6]

Ontológiai modul

  • "ez egy" kapcsolattípus:
    • matematika(leginkább használt alkalmazási terület)
    • informatika(a matematikából következő alkalmazási terület)
  • "van neki, része szócikknek":
    • axióma
    • valószínűségi mező
    • diszcipliníva
  • "a szócikk része valaminek":
    • precíz specifikáció

Ellentmondások és vitatott kijelentések modulja

  • A kísérlet több azonos feltételek között történő független, ismételt végrehajtásból áll, minden egyes megismétlése egy-egy kimenetelt valósít meg. Ha azt kérdezzük, hogy mi a valószínűsége egy eseménynek, azt várjuk, hogy a válasz egy szám, amely a kérdéses eseményhez van rendelve. A valószínűség tehát egy függvény, amelynek értelmezési tartományát események, értékkészletét számok alkotják.
  • Komoly probléma, hogy a valószínűségszámításban bizony mást jelent a különbözőség és mást a megkülönböztethetőség fogalma. Külsőleg hiába teljesen egyforma két kocka, azért különböznek egymástól (pl. befesthetők).

Definíciós modul

Valaminek valószínű, lehetséges, bekövetkezhető volta, jelleg; megközelítő, fél bizonyság, lehetőség, esély. Esemény bekövetkezésének, állítás helyességének lehetőségét kifejező mérték.Az a mérték, amellyel -a szükségszerű és a véletlen tényezők egybevetése alapján- kifejezzük, hogy valamely esemény, jelenség, tény, állításbekövetkezésének, illetve helyességének milyen objektív lehetősége van.

Tesztkérdések modul

Milyen mezőkre definiáljuk a valószínűséget?(A valószínűség fogalmát, a történeti fejlődést követve előbb a szerencsejátékokból eredő módszerrel a klasszikus (a), majd a matematikailag egzakt módon (axiómákkal) az általános (Kolmogorov-féle) valószínűségi mezőre (b) definiáljuk.)

Ajánlott irodalmak modulja

  • Juhász József, Szőke István, O. Nagy Gábor, Kovalovszky Miklós:Magyar Értelmező Kéziszótár[7]
  • Magyar Tudományos Akadémia Nyelvtudományi Intézet:A magyar nyelv értelmező kéziszótára[8]