+ Ötletistálló +

Erre igazán büszkék vagyunk! close

+ MY-X DVD +

2017.IX.
A MY-X team (fiatal tagjaival közösen) sikeresen vett részt a szarvasi konferencián!

2017.VII.
A MY-X team (fiatal tagjaival közösen) sikeresen vett részt az Enyedi Emlékkonferencián!

2017.VI.
A MY-X team egy tagja elnyerte a Bárdy Péter Természettudományi Díjat többek között kiemelkedő innovativitása okán!

2017.V.
A MY-X team egy tagjának a Gábor Dénes Középiskolai Ösztöndíj pályázatra benyújtott dolgozatát a Zsűri véleménye alapján az Alapítvány kuratóriuma matematikai különdíjban részesítette, ill. a kutatócsoport tagjának további tanulmányait egyszeri ösztöndíjjal segíti!

2017.IV.
Különdíjat kapott a MY-X team egyik tagja a minszki nemzetközi esszéíró versenyen a jövő iskolájában várható IKT használatról szóló tanulmányáért!

2017.IV.
III. helyezés a Hlavay Diákkonferencián!

2017.III.
Az NTP-NFTÖ támogatásával beszerzésre került egy prémium kategóriás laptop!

2017.II.
A TUDOK (nyíregyházi) országos döntőjéből sikeres továbbjutás a (székesfehérvári) Kárpát-medencei döntőbe!



Last modified: 2015.VII.19.14:08 - MIAÚ-RSS
A MIAÚ immár 20­+ éve áll a Köz szolgálatára!
MATARKA-nézet

Optical diagnostics and analysis of steady combustion based on artificial intelligence

Leading article: 2020. November (MIAU No. 267.)
(Previous article: MIAU No. 266.)

Keywords: physics, consistence, chained similarity analyses

Abstract: Background: The cooperation between two departments (the Department of Mechatronics, Optics, and Mechanical Engineering Informatics – MOGI and the Department of Energy Engineering - EGR) of the Budapest University of Technology and Economics motivated this study. EGR has a few years of background in the field of experimental thermal and optical diagnostics of steady combustion. Since the distributed combustion offers a low pollutant emission, therefore, investigating such a flame with another spectrometer having higher resolution became timely. The reduced chemiluminescent of distributed combustion emission causes a lower intensity, requiring a more sensitive instrument. Challenges: Regulations for combustion chambers are continuously stringent, especially for pollutant emissions. The emission can be influenced through passive elements like advanced nozzle geometry and/or diverging nozzle/quarl. The effect of these passive elements can be evaluated from pollutant emission analysis data. Besides geometry, the flow field also largely influences emissions. The corresponding features include, e.g., flame shape, pressure, andtemperature fields. Control of these parameters is usually realized by active systems. However, the reaction time of pollutant emission sensors is in the range of ten seconds, hence, an alternative solution is necessary for online control. Tasks: Online combustion control needs real-time input about the features of combustion, such as chemiluminescent emission and pressure fluctuations. The former propagates with the speed of light, while the latter with the speed of sound – both of them are excellent for the desired purpose. Therefore, the index values were calculated firstly, based on the emitted gases derived from the chemiluminescent signal. Both the aggregated index values about the ideality of the emitted gases and the derivation of them based on spectral data are calculated through artificial intelligence (AI), ensuring the expected real-time 7 characteristics. The AI is necessary to ensure a high-levelled quality management during the automated derivation processes of production function like Y=f(X1;...;Xn). Results: The ideality index values of the emitted gases (as the output of AIbased term-creation processes) could be modelled based on the spectral data. The best set of the combustion parameter-variants (the best treatment) could also be derived based both on the dynamics of the index values and on the aggregated views of the treatments in a validated way. The ideality index values could be derived based on the physical aspects of the combustions like temperatures, pressures, volumetric flow rates, etc. The correlation between the facts and estimations of the production function (in case of the homogenous treatments): 0.83. Parallel, the different gas concentrations could also be derived, not only their aggregated ideality values. Based on the relative robust production function, the genetic potential of the ideality could be modelled, and so, the finetuned parameters of an ideal treatment could be derived. The AI-based models could be produced using a high-level quality assurance system (the symmetry of the functions), and these models have therefore a reduced gossip-potential because these models know the none as system output too. More (PDF)


Please, send Your comments per email!

((Back))
miau.my-x.hu
myxfree.tool
rss.services